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Summary
Non-protein-coding (nc) RNAs are diverse in their modes of synthesis, processing, assembly, and
function. The inventory of transcripts known or suspected to serve their biological roles as RNA has
increased dramatically in recent years. Although studies of ncRNA function are only beginning to
match the pace of ncRNA discovery, some principles are emerging. Here we focus on a framework
for understanding functions of ncRNAs that have evolved in a protein-rich cellular environment, as
distinct from ncRNAs that arose originally in the ancestral RNA World. The folding and function of
ncRNAs in the context of ribonucleoprotein (RNP) complexes provide myriad opportunities for
ncRNA gain of function, leading to a modern-day RNP Renaissance.

Introduction
Many eukaryotic genomes have a relatively sparse content of protein-coding loci. However,
substantial regions beyond those devoted to protein-coding mRNA production are transcribed
[1]. The rapid increase in ncRNA discovery has outpaced functional studies or even a system
of annotation based on transcript biogenesis, processing, or fate. Still, broad classes of ncRNAs
have emerged. Even the most short-lived transcripts, those degraded at the site of synthesis,
can have significant biological activities. Indeed, at least some of the cis-acting natural
antisense RNAs and ncRNAs that regulate gene expression, chromatin dynamics, and
chromosome structure could function primarily as nascent transcripts [2–4]. Other transcripts,
produced from a single DNA strand or synthesized in a bidirectional manner, form inter-or
intramolecular duplexes to yield the ~20–30 nucleotide small RNA molecules that direct RNA
silencing-related pathways [5].

This review focuses on a third class of functional ncRNA, which for simplicity here will be
designated as structured ncRNA. The term “structured” is intended in a broad sense, referring
to folded motifs that may be interspersed within a larger, mostly unstructured transcript or that
may fold only in association with a particular ligand. The function of ncRNAs in this category
is generally envisioned to require biologically stable accumulation, conferred by association
with one or more proteins. RNPs that harbor ncRNAs have many possible forms, with static
or dynamic subunit compositions and RNA-protein interactions of varying degrees of
sequence- or structure-specificity.
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Some structured ncRNAs emerged as functional molecules relatively early in evolution and in
their extant versions can be considered descendants of an ancestral RNA World. However, the
majority of ncRNAs appear to have evolved more recently. Here, we explore the properties of
ncRNAs that evolved in a protein-rich cellular environment, in contrast with the ancestral
ncRNAs that developed function prior to their acquisition of protein partners (or the very
existence of proteins). This evolutionary distinction has implications for ncRNA function, as
discussed in the first section below. Subsequent sections illuminate distinct mechanisms of
ncRNA function, including ncRNA roles as scaffolds of macromolecular complex assembly,
hybridization guides, templates for polymer synthesis, and beyond. Importantly, the selected
ncRNA examples illustrate a range of evolutionary scenarios: acquisition of function by a novel
transcript, diversification of RNPs assembled by a single ncRNA, and diversification of a
ncRNA family that retains shared protein partners.

The RNP Renaissance
Current versions of the structured ncRNAs that debuted early, arising in a RNA-dominated
World, have been paradigms for insights about fundamental principles of RNA folding and
catalytic mechanisms [6]. These ncRNAs are proposed to have evolved their protein interaction
partners in an early RNP World (Figure 1), driven by the ability of short peptides to improve
and regulate RNA folding and function [7]. Following the transition to a largely Protein World,
rich with protein enzyme active sites, the selective pressure for evolution of new catalytic RNAs
would have been low [8]. However, predominance of protein-based catalysis has not halted
the acquisition of new functions by ncRNAs [9]. Instead, we propose that the rich diversity of
RNA-protein interaction modes evident in modern organisms facilitates ncRNA gain of
function in the context of RNPs. To emphasize the important distinctions between ancestral
and ‘modern-day’ evolution of function by ncRNAs, the post-protein explosion of ncRNA
complexity can be termed the RNP Renaissance (Figure 1).

RNPs with a ncRNA platform for protein assembly
A well-documented, logical role for structured ncRNAs of the RNP Renaissance is to act as
versatile platforms for protein assembly (Figure 2). This role capitalizes on the prior evolution
of a large inventory of protein folds and an enormous structural diversity of protein-RNA
interactions. Transcription can support synthesis of extremely long RNA polymers in vivo,
and yet only short motifs are required for highly specific protein interactions. These features
make RNA well suited for gain of function as a protein-bridging platform of macromolecular
assembly. Indeed, the functions of most structured ncRNAs are likely to depend at least in part
on their protein-scaffolding abilities.

RNA scaffolds have distinct, unique structural properties. Constraints on the relative
positioning of proteins bridged by RNA can be tight (if the scaffold is rigid), rotationally
flexible (if the otherwise rigid scaffold has hinges), or variable over great distance (if the
scaffold harbors segments of duplex RNA with many hinges, has extended single-stranded as
well as duplex regions, or undergoes conformational dynamics on a biological time scale).
Proteins may exchange from the scaffold with different kinetics, through mutually exclusive,
independent, or coordinate interactions. While bridging of several different proteins may be
the most common function served by RNA scaffolds, structured ncRNAs can also bridge or
nucleate the assembly of multiple subunits of the same protein. For example, heat shock RNA
1 appears to function by trimerizing the heat shock transcription factor HSF1 [10], which
stimulates HSF1 function as a transcriptional activator.

The use of RNA-scaffolded assemblies for chromatin specialization has evolved independently
in numerous biological contexts. The Drosophila roX1 and roX2 RNAs are notable examples
of this ncRNA function. RNPs assembled on functionally redundant roX1 or roX2 accomplish
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dosage compensation in males by increasing gene expression from the singleton X
chromosome. The roX RNAs bind and bridge numerous proteins (Figure 2A), including
chromatin-modifying enzymes [11]. These RNPs are preferentially recruited to specific
chromosome loci and then spread to flanking binding sites, eventually generating a RNP-coated
chromosome with a characteristic banding pattern. In addition to their scaffolding role, the
roX RNAs either directly or indirectly serve as allosteric activators of RNP enzyme activity in
chromatin modification [12]. Although chromatin surrounding a roX RNA expression site
preferentially recruits roX RNPs, this feature is not a fundamental requirement for ncRNA
function: sites of roX RNA expression and function can be physically unlinked [13].
Mammalian X-chromosome inactivation also involves spreading of ncRNA on chromatin,
albeit in a manner more strictly cis-linked to the ncRNA expression locus [2]. These and other
examples highlight the theme of ncRNA function in chromatin specification and raise the
prospect that long, partially structured ncRNAs are particularly well suited to mediate protein
spreading along the length of a chromosome.

The scaffolding function of ncRNAs can be exploited to regulate protein activities in response
to changing cellular conditions, as demonstrated by the human 7SK RNA. This abundant
nuclear ncRNA forms distinct RNP assemblies that are in dynamic, stress-regulated exchange
(Figure 2B). In one RNP form, 7SK RNA negatively regulates the transcription elongation
factor P-TEFb by sequestering it in a multisubunit RNP complex [14,15]. In alternate RNP(s),
7SK RNA interacts with a distinct set of proteins to form complexes predicted to have
reciprocally related function [16–18]. 7SK RNA has long been thought to be vertebrate-
specific, but recent evidence suggests that it has a wider evolutionary distribution [19]. This
finding presents an opportunity to investigate the phylogenetic diversification of 7SK RNP
composition and biological regulation as a model for understanding structured ncRNA gain of
function in the RNP Renaissance.

RNPs in which the ncRNA defines base-pairing specificity
Another role for structured ncRNAs that has been particularly well-characterized is to act as a
guide for Watson-Crick base-pairing. Even nascent transcripts can base-pair with a
complementary nucleic acid target, if a suitable region of sequence is accessible for
hybridization. But the RNP context of a structured ncRNA provides opportunities for improved
hybridization specificity and expanded diversity in the biological outcome of hybrid formation.
Large families of structured ncRNAs can share a conserved motif architecture that establishes
both the specificity of ncRNA assembly with protein partners and the position of the sequence
that will function as a hybridization guide (Figure 3). Gene duplication followed by guide-
sequence divergence can expand the scope of RNP hybridization targets (Figure 3, right), while
sequence changes in other regions of the ncRNA can expand the scope of RNP function in a
different manner, giving entirely new biological roles to the ncRNA (Figure 3, left). In these
examples, the RNA motifs and protein interaction partners that protect ncRNA biological
stability are conserved while additional ncRNA motifs are reshaped through natural selection.
Evolutionary adaptation of ncRNA in RNP context thus provides enormous potential for
ncRNA-mediated diversification of RNP architecture and function.

The small nucleolar (sno) RNAs are representative structured ncRNA families that share motifs
for protein interaction but possess divergent guide sequences for target hybridization.
SnoRNAs typically guide base and sugar modifications of ribosomal RNA [20]. The shared
snoRNP proteins include an enzyme that catalyzes the modification reaction, but its activity
and substrate specificity depend on base-pairing of the snoRNA internal guide with the
intended RNA target of modification. A subset of snoRNA family members have an additional
motif that mediates preferential association with Cajal bodies rather than the nucleolus; these
so-called scaRNAs modify small nuclear RNA rather than ribosomal RNA targets [21]. Newly
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evolved snoRNA family members have also been proposed to regulate adenosine-to-inosine
editing and pre-mRNA splicing [22–24]. The snoRNA structural platform has even been
appropriated to fulfill functions beyond target hybridization, for example acting within the
vertebrate telomerase RNA to direct precursor processing, mature RNA accumulation as RNP,
and RNP localization [25].

Beyond the biological exploitation of structured ncRNAs as specificity factors for
hybridization to a target nucleic acid, structured ncRNAs can present an internal single-
stranded region for use as template. Telomerase RNAs harbor a template for synthesis of the
telomeric-repeat DNA at eukaryotic chromosome ends. Across evolution the family of
telomerase RNAs has retained the presence of a template and the ability to recruit telomerase
reverse transcriptase to copy it, but otherwise family members are highly divergent in RNA
and RNP architecture. Divergent telomerase RNA structures adapt the enzyme to particular,
organism-specific strategies of active RNP assembly, localization, and regulation [26]. The
bacterial 6S RNA demonstrates that ncRNA-templated nucleic acid synthesis can be co-opted
as a mechanism to regulate ncRNA function. The 6S RNA binds to a subset of RNA Polymerase
holoenzymes to impose promoter-specific transcriptional inhibition in stationary phase [27].
Remarkably, beyond mediating polymerase inhibition by ncRNA-protein interaction, 6S RNA
also harbors an internal region that functions as a template for RNA synthesis [28,29]. 6S RNA-
directed RNA synthesis allows the polymerase to escape from 6S association during outgrowth
from stationary phase.

A final example here illustrates that the templating function of ncRNA is not restricted to
directing the synthesis of nucleic acids. The bacterial tmRNA instead provides an mRNA-like
template for protein synthesis [30]. A region of tmRNA enters the decoding site of a ribosome
stalled in translation and is paired with charged tRNAs to template the addition of a C-terminal
peptide tag. The fusion protein is marked as a product of abortive translation and rapidly
degraded. Even from the few examples described above, a remarkable breadth in the ability of
structured ncRNAs to exploit Watson-Crick base-pairing for recognition of dNTPs, NTPs, or
tRNA anticodons is evident.

Functional diversification of RNPs containing ncRNA
The great heterogeneity of possible RNA folds and RNP architectures suggests that a much
wider scope of ncRNA function should be possible, beyond the use of modular RNA motifs
for protein binding or base-pairing. It is less straightforward to define novel biochemical
properties or functions of ncRNA than to uncover new examples from the known ncRNA
playbook, particularly given the relatively few methods available for studying ncRNA versus
protein folding, interactions, localization, and dynamics in vivo. Many structured ncRNAs with
currently unknown roles will eventually be shown to function primarily by bridging associated
proteins and/or base-pairing with nucleic acids. However, we suggest that especially in the
context of biologically stable, structured ncRNAs already playing these roles, modular RNP
architectures present opportunities for ncRNAs to explore additional mechanisms of function.

Expansion of the Y RNA family provides a potential example of novel ncRNA gain of function.
Many organisms encode a single Y RNA, but higher eukaryotes have diversified a Y RNA
family (Figure 4) with at least some members under positive selection for sequence divergence
[31,32]. Y RNA biological stability requires association with its partner protein, Ro. Ro does
not have enzymatic activity, but enzymes recruited transiently to the Ro platform are thought
to mediate degradation of misfolded ncRNAs recognized by Ro as substrates for quality control
[33]. A bound Y RNA is predicted to occlude the Ro surface required for high-affinity binding
to misfolded RNA [34]. Thus, the ancestral Y RNA could have been a negative regulator of
Ro association with potential ncRNA quality control substrates [33].
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Y RNA family members share the motifs necessary for Ro binding, but they are highly
divergent in other sequence features (Figure 4). Like snoRNA families, the Y RNA family
could have gained function by beneficial expansion of the scope of targets recruited to the
shared protein platform. Unlike snoRNAs, however, Y RNAs lack single-stranded regions of
conserved length and positioning that would be candidate motifs for mediating hybridization
to RNA targets. Instead, the family of Y RNAs may specialize Ro function by recruiting
particular misfolded ncRNA targets in their endogenous RNP context, via a RNP-RNP mode
of recognition rather than simple RNA-RNA base-pairing [35]. Motifs specific to an individual
Y RNA could be subject to ongoing selection for improved recognition of the evolving
misfolded ncRNA targets of quality control surveillance.

Much remains to be understood about Y RNA and Y RNP function. Independent of the eventual
roles defined for individual members of the Y RNA family, it will be interesting to uncover
how expansion of this ncRNA family in shared RNP protein context led to gain of function
compared to how gain of function was accomplished by assembly of a single ncRNA with
alternate RNP protein partners, as discussed above for human 7SK RNA.

Conclusions
Knowledge about ncRNA has reached only the tip of an iceberg [36], but already the diversity
of ncRNA functions resists easy categorization. Beyond elucidating additional details of
specific modes of ncRNA function, further investigation will expand our knowledge of the
scope of ncRNA roles in the RNP Renaissance and mechanisms by which ncRNA evolution
generates functional complexity. These efforts will be facilitated by methods that can assess
ncRNA localization and interactions in vivo. Innovative use of modified nucleic acids as
hybridization probes greatly advanced the study of ncRNPs [37]. New tag-based ncRNA
localization and RNP affinity purification methods [16,38,39] should enable a broader scope
of analysis, including integration of ncRNAs into the current protein-centric versions of cellular
interaction networks.

Are there discernable themes for the biological roles of structured ncRNAs arising in this
modern-day RNP Renaissance? As a final point of speculation, we note that many structured
ncRNAs function in a manner linked to cellular stress. Several independently evolved ncRNAs
have been shown to be stabilized by stress and to act under these conditions to inhibit
transcription [27,40–42]. Even ancestral ncRNAs may have gained roles in stress response:
for example, under stress, mature tRNAs are processed by cleavage in the anticodon loop to
generate transiently accumulating tRNA halves [43]. These and other examples of stress-
associated ncRNAs could have been preferentially characterized due to their abundance or
readily discernable regulation; in eukaryotes, these ncRNAs are often produced by RNA
Polymerase III, facilitating their detection using bioinformatic analysis [44]. However, there
may be a robust biological rationale for evolution of ncRNA roles during stress conditions.
The minimal lag and low energetic cost of RNA synthesis relative to protein synthesis would
be advantageous for a stress response, and, in fact, many forms of cellular stress disfavor a
response requiring protein synthesis due to stress-induced translational repression. The
repeating theme of roles for structured ncRNAs in cellular stress responses, along with a
growing appreciation of extraordinary ncRNA diversity, suggest that there are important and
widespread implications of the RNP Renaissance.
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Figure 1.
A modern-day RNP Renaissance. A putative series of evolutionary transitions is illustrated
based on the suspected origin of life in an ancestral RNA World, followed by the rise of an
early RNP World in which proteins facilitated the folding and catalytic activity of RNAs,
eventually superceded by an explosion of protein complexity and the domination of enzymes
with protein active sites. Based on widespread evidence for an ongoing evolutionary expansion
of ncRNA complexity, we designate a modern-day RNP Renaissance distinct from the early
RNP World in its protein-rich context for ncRNA gain of function.
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Figure 2.
Non-coding RNA function as a scaffold of macromolecular assembly. The ability of even small
RNA motifs (of less than 20 nucleotides) to fold uniquely and with high thermodynamic
stability is one of several features that suggest ncRNA would be well suited to serve as a
versatile scaffold of macromolecular assembly. Gain of RNP scaffold complexity can occur
by increasing the number of proteins in a single macromolecular assembly, for example by
recruiting additional proteins to join the complex, and/or by alternative assembly of distinct
RNPs on a single ncRNA. (A) A long ncRNA can recruit multiple proteins that are independent
or cooperative in their RNP assembly. Multimerization of the ncRNP is possible as well, either
by RNA-RNA or protein interactions. In the case of the Drosophila roX RNAs, in addition to
providing a scaffold, ncRNA motifs regulate the activity of bound proteins. (B) A single
ncRNA can assemble distinct RNPs. In the case of human 7SK RNA, some RNP components
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are mutually exclusive in their ncRNA association. Distinct 7SK RNPs assemble and
disassemble in a dynamic, stress-regulated equilibrium.
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Figure 3.
Non-coding RNA function as a specificity guide for Watson-Crick base-pairing. A single-
stranded region within a structured ncRNA can be used as a hybridization guide or as a template
for polymer synthesis. Within an expanded family of ncRNAs, the hybridization guide
sequences of individual members can diverge while retaining the shared motifs essential for
assembly of the RNP core (the path at right). New ncRNA motif additions can also occur (the
path at left), for example creating a binding site for additional protein(s) that yield a new type
of RNP with novel localization, function, and/or regulation.
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Figure 4.
Non-coding RNA function as a specificity factor for RNP-RNP interaction. Gain of function
by ncRNA extends beyond its roles as a reaction catalyst, scaffold, or guide for base-pairing.
One potential example of this less readily categorized gain of function can be illustrated by
consideration of the human family of Y RNAs. Each Y RNA has a conserved motif required
for biological stability through assembly with the protein Ro. Y RNA-Ro interaction may serve
the general role of reducing Ro interaction with off-target ncRNAs. However, the central region
of the Y RNA differs in sequence and structure across family members. This region, potentially
in combination with a nearby surface of Ro, could mediate an individual ncRNA-specific gain
of function by recruiting different RNP substrates for quality control surveillance.

Hogg and Collins Page 13

Curr Opin Chem Biol. Author manuscript; available in PMC 2009 December 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


