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Abstract
A universal cellular defense mechanism against viral invasion is the elimination of infected cells
through apoptotic cell death. To counteract host defenses many viruses have evolved complex
apoptosis evasion strategies. The oncogenic human retrovirus HTLV-I is the etiological agent of
adult-T-cell leukemia/lymphoma (ATLL) and the neurodegenerative disease known as HTLV-
associated myelopathy/tropical spastic paraparesis (HAM/TSP). The poor prognosis in HTLV-I-
induced ATLL is linked to the resistance of neoplastic T cells against conventional therapies and the
immunocompromised state of patients. Nevertheless, several studies have shown that the apoptotic
pathway is largely intact and can be reactivated in ATLL tumor cells to induce specific killing. A
better understanding of the molecular mechanisms employed by HTLV-I to counteract cellular death
pathways remains an important challenge for future therapies and the treatment of HTLV-I-
associated diseases.

Introduction
Apoptosis, or programmed cell death, plays a major role in tissue development, homeostasis,
and the immune response [1]. Virus-infected cells are frequently removed from the body
through apoptosis, effectively eliminating the infection in the absence of an inflammatory
response. Apoptosis is tightly controlled by a group of cysteine proteases known as caspases,
as well as the Bcl-2 family of proteins which regulate the release of pro-apoptotic proteins from
the mitochondria. Despite multiple levels of regulation, deregulated apoptosis contributes to
the development of cancer, while excessive apoptosis is conversely associated with tissue
destruction seen in various autoimmune disorders [2]. To regulate apoptosis induced by the
host, many viruses have evolved strategies to modulate key checkpoints of the apoptotic
pathway. Some viruses, such as members of the γ-herpesvirus family, encode a homologue of
cellular anti-apoptotic Bcl-2 [3]. A variety of other novel viral anti-apoptotic mechanisms have
been characterized, including: caspase inhibitors (i.e. poxviruses, murine herpes virus-68, and
African swine fever virus); soluble cytokine receptors (EBV); the inhibition of cellular stress
responses (Papillomaviridae, Polyomaviridae, and Adenoviridae); and the inhibition of death
receptor-mediated apoptosis (γ-herpesviruses and poxviruses) [4-7]. A number of DNA
viruses, such as poxviruses, adenoviruses, and human cytomegalovirus (CMV), also encode
mitochondrial-localized inhibitors of apoptosis which function to regulate cytochrome c
release [5].

In stark contrast to these anti-apoptotic mechanisms, other viruses appear to sensitize cells to
apoptosis to the benefit of virus replication and egress. Human immunodeficiency virus (HIV)
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and hepatitis B (HBV) virus encode pro-apoptotic alpha-helical proteins Vpr and HBX that
form pores in the mitochondrial membrane [5], thereby sensitizing the mitochondria to
cytochrome c release. Other viral proteins, including E1A from adenovirus, the envelope
protein from HIV, human papilloma virus (HPV) protein E1E4, the fusion protein from
respiratory syncytial virus (RSV), and the reovirus protein mu1, also induce apoptosis through
various mechanisms, including the disruption of the mitochondrial network and p53 activation
[8,9]. While some of these viral proteins, such as Vpr and HBX, specifically induce
programmed cell death to the benefit of the virus, other viral proteins such as E1A appear to
induce apoptosis as a consequence of detection by innate cellular defense mechanisms.

HTLV-1: Human T-cell leukemia virus type I
The retrovirus human T-cell leukemia virus (HTLV)-1 is the etiological agent of adult T-cell
leukemia/lymphoma (ATLL), a fatal lymphoproliferative disease [10]. While the majority of
HTLV-1-infected individuals remain asymptomatic, upwards of 5% of patients ultimately
develop ATLL. ATLL is characterized by the rapid and uncontrolled clonal proliferation of
mature transformed CD25+CD4+ T cells, and the mean survival of patients in the acute phase
of the disease is approximately 6 months [11]. HTLV-1-infection is also associated with a
neurodegenerative disease known as HTLV-associated myelopathy/tropical spastic
paraparesis (HAM/TSP)[12,13]. Other autoimmune diseases, including uveitis, arthritis,
polymyositis, Sjögren syndrome, atopic dermatitis, and alveolitis, have been reported in
HTLV-I infected individuals [13]. Altogether, the treatment of HTLV-I-infected patients is
generally difficult as infected cells are refractory to conventional chemotherapy and radiation-
based cancer treatments.

HTLV-1-infected cells and ATLL cells from patients are highly resistant to multiple pro-
apoptotic stimuli, including death receptor-mediated, DNA damage-induced, and γ-irradiation
apoptosis compared to uninfected normal cells [14-18]. HTLV-1-infected ATLL cells removed
from the in vivo environment, however, die spontaneously by apoptosis when cultured in
vitro, thereby complicating investigations into mechanisms employed by patient-derived
ATLL cells [19]. As a result, most studies with ATLL and HTLV-1-infected cells rely on
HTLV-1-transformed cells in vitro or short term culture of ATLL derived cells.

In contrast to ATLL, TSP/HAM is associated with chronic and progressive inflammation of
the spinal cord [12]. TSP/HAM derived cell lines, like ATLL [20,21], also exhibit resistance
to FasL- and etoposide-induced apoptosis [22] [23], and FasL and the Fas-associated
phosphatase are upregulated in TSP/HAM cells [24] [22,25]. While TSP/HAM cell lines
exhibit a general resistance to apoptosis, expression of the viral protein Tax sensitizes
astrocytomas to programmed cell death, and HTLV-1-infection induces the expression of
IL-1β, IL-1α, IL-6, TNF-α, TNF-β[26]. A rat model for HTLV-1 infection demonstrated a role
for apoptosis in the destruction of oligodendricytes and Schwann cells associated with the
down-regulation of Bcl-2 and the up-regulation of Bax and p53 [27,28]. Future work is needed
to fully elucidate the roles of programmed cell death and the induction of a pro-inflammatory
response in this chronic inflammatory disease.

HTLV-I exhibits several unique properties not seen in other animal onco-retroviruses. The end
of the proviral genome contains several open reading frames encoding for the regulatory
proteins p12, p30, p13 and HBZ (Figure 1), which are involved in virus infectivity, immune
escape, and the establishment of a latent state [29]. The viral protein Rex binds an RNA element
(RxRE) present in the 3’ region of the viral mRNA and stimulates the transport of unspliced
or singly spliced viral RNA to the cytoplasm to express structural proteins. Perhaps the most
studied viral protein is the viral transcriptional transactivator Tax, which is involved in cellular
transformation and specifically interacts with CREB, coactivators CBP/p300, and PCAF to
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stimulate transcription from the viral long terminal repeat (LTR)[30-34]. Tax plays an
important role in the initiation of cellular transformation and also stimulates cellular
proliferation by inactivating several cell cycle checkpoints [35-37]. In addition, several studies
have shown that Tax inhibits the nucleotide excision repair (NER) pathway, beta-polymerase
and topoisomerase [37-39]. While these events may facilitate cellular transformation, it is likely
that cells need to acquire a pre-tumoral genotype and tolerance to Tax expression before
transformation takes place.

Recent studies have shown that the apoptotic pathway can be reactivated in HTLV-1-
transformed cells, indicating that the apoptotic machinery is likely intact. It is the focus of this
review to examine the underlying mechanisms HTLV-1 uses to repress apoptosis, and to
highlight the therapies being evaluated to reactivate and trigger the apoptotic pathway in
HTLV-1-transformed cells and infected patients.

HTLV-I Tax: Regulation of NF-κB, Akt, and gene expression
Tax is a potent trans-activator of transcription, and induces the constitutive activation of the
major cellular pro-survival pathways NF-κB and Akt. Twenty years ago, it was first
documented that Tax could induce transcription from the interleukin-2 gene via NF-κB related
factors, indicating that Tax could activate NF-κB-regulated genes [40,41]. It has since been
demonstrated that Tax activates NF-κB through several different mechanisms. Tax can directly
interact with IKKγ, ultimately triggering the continual phosphorylation and ubiquitin-mediated
degradation of IκB to allow NF-κB translocation to the nucleus (Figure 1)[42-45]. The direct
activation of IKK by Tax has recently been demonstrated using an in vitro assay [46], and this
activation step requires the phosphorylation of IKK. Alternatively, Tax can form a complex
with the p100 NF-κB precursor protein along with IKKα/IKKγ to facilitate the cleavage of
p100 into the active p52 NF-κB subunit [47]. Thirdly, Tax can interact directly with NF-κB
subunits to facilitate NF-κB transcriptional activation [48-50], and has also been shown to
directly recruit transcriptional co-activators CBP/p300 to NF-κB complexes in the nucleus
[32,51,52].

The nuclear translocation and activation of NF-κB can lead to the transcriptional up-regulation
of a number of anti-apoptotic proteins (Fig. 1). One potent anti-apoptotic protein up-regulated
by Tax-mediated NF-κB and CREB activation is Bcl-xL [53,54], and T-cells from HTLV-1-
infected patients correspondingly display up-regulated levels of Bcl-xL [55]. In support of the
role that NF-κB plays in the inhibition of cell death in HTLV-I infected cells, drugs which
inhibit NF-κB are potent inducers of tumor cell death in vitro [56](Discussed below, see Table
1). The induction of NF-κB activation by Tax also increases expression of the inhibitor of
apoptosis (IAP) family (Fig. 1) [57,58]. IAPs are capable of directly binding to caspases, and
can induce caspase degradation. Indeed, siRNA directed against one IAP, HIAP, greatly
sensitized cells to apoptosis, suggesting HIAP expression may be important for Tax-mediated
survival [58]. The cell regulatory protein p21 is also transactivated by Tax, and contributes to
an anti-apoptotic phenotype of Tax-immortalized cells via the transactivation of NF-κB/CREB
leading to the activation of anti-apoptotic genes [59]. The T-cell co-stimulatory molecule
4-1BB (TNFRSF9/CD137/ILA), which is involved in cell proliferation and survival, is also
up-regulated by Tax, likely through NF-κB [60].

Another cell signaling pathway modulated by Tax is Akt, a pro-survival serine/threonine kinase
that is constitutively activated in most ATLL patients [61]. Akt is phosphorylated on Serine473
in most ATLL patients, and Tax promotes this by interacting with and activating the upstream
phosphatidylinositol-3-kinase (PI3K) [62,63]. Activated Akt induces the downstream
activation of additional transcription factors such as AP-1 and β-catenin [64] (Fig. 1), leading
to Bcl-xL expression, p53 repression, and cell survival. Indeed, under specific conditions
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treatment of HTLV-1-infected cells with LY294002, an inhibitor of the PI3K pathway, induces
cell death [61,65], supporting the role that Akt plays in Tax-mediated cell survival. As well,
certain reports have suggested that there is a cross-talk between Akt and NF-κB [61].

In addition to the activation of the NF-κB and Akt pathways, Tax also alters the transcription
factor AP-1 [66,67], although the specific effects of Tax-mediated AP-1 activation remain to
be characterized. Tax also modulates a number of apoptotic genes via unknown mechanisms.
Tax induces the production of cellular FLICE-inhibitory proteins (c-FLIPs) [68], which can
inhibit CD95-induced cell death. HTLV-1 infection also induces the expression of the
telomerase gene hTERT to protect transformed cells from replicative senescence [69].
Interestingly, hTERT also has the ability to inhibit mitochondrial cell death induced by specific
pro-apoptotic stimuli [70]. Whether the induction of hTERT expression by Tax also has pro-
survival effects at the mitochondria has yet to be explored. Recent microarray data
demonstrated the general down-regulation of anti-apoptotic genes in HTLV-1-transformed
cells [71] and that the induction of Akt/PI3K and the inactivation and phosphorylation of the
pro-apoptotic Bcl-2 family member Bad might be critical to the regulation of apoptosis.

While Tax constitutively activates Akt and NF-κB, Tax also negatively regulates the cell cycle
checkpoint tumor suppressor p53, which normally triggers cell cycle arrest and apoptosis in
response to DNA damage [72]. p53 is functionally inactivated by Tax and is mutated in
approximately 30% of all ATLL patients [73-75], thereby abrogating p53-mediated G1 cell
cycle arrest and p53-mediated apoptosis in ATLL tumour cells [76]. Even in absence of genetic
mutation, p53 appears to be inactivated in ATLL cells in vivo [77]. Tax-mediated inactivation
of p53 is believed to occur through p53 phosphorylation on specific residues [74,78]. As well,
a recent study also suggests that the transcriptional repressor of p53, MdmX, is up-regulated
in HTLV-I infected cells in vitro and in vivo, and may play an important role in the inactivation
of p53 in the absence of Tax expression [79]. The ability of Tax to repress the non-
transcriptional functions of p53 is intriguing. Tax-mediated repression of p53 transactivation
has a profound effect on G1 arrest and apoptosis induced by p53 overexpression [80]. In that
study, the CREB/ATF, but not the NF-κB activation by Tax was essential for p53-inhibition
[81]. The amount of protection from apoptosis obtained upon expression of Tax correlated with
the decreased transcriptional activation of p53 observed in the various cell lines, indicating
that the Tax-mediated protection from apoptosis may in part be related to the suppression of
p53 transcriptional activity. Interestingly, p53 has also been shown to have a direct pro-
apoptotic role at the mitochondria [82]. Whether this particular pro-apoptotic function is altered
in ATLL or HTLV-1-infected cells is unknown.

In addition to p53, Tax has been shown to affect virtually every other cell cycle phase and
checkpoint, including G1phase, G1/S checkpoint, S phase, G2/M checkpoint, and mitosis. Tax
directly interacts with the cell cycle checkpoint kinase 2 (Chk2), and inhibits gamma-
irradiation-induced apoptosis [17]. Additional effects of Tax on the cell cycle have been
recently reviewed [36,37].

The fact that Tax constitutively activates both NF-kB and Akt, and that Tax simultaneously
inactivates p53 should point to a broad anti-apoptotic activity of Tax. Experimental data,
however, remain controversial, as numerous studies have reported that the overexpression of
Tax induces apoptosis. Over-expression of Tax sensitized cells to DNA-damage-induced
apoptosis in a p53-independent manner [83,84], and induced cell death in Jurkat cells
expressing CD95 (Fas) in a caspase-dependent manner [85]. This Tax-induced death can be
blocked by Bcl-2 expression [86]. Tax was also observed to induce caspase-dependent cell
death that correlated with the ability of Tax to regulate p300/CBP activity, but not NF-κB
activity [87]. These observations are similar to those seen with other oncogenic factors such
as Myc, Cyclin D and E1A, which also display both proliferative and pro-apoptotic effects. In
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contrast to most viral proteins which directly inhibit a particular checkpoint of the apoptotic
cascade, Tax alters the expression of cellular genes and hijacks cell signaling pathways.
Therefore, cells of different origin expressing different proteins may respond in different ways
to Tax expression adding confusion to the field. Additional factors that influence cellular fate
are the levels and duration of Tax expression. Tax transgenic mice develop numerous tumors
and cells isolated from those tumors are highly refractory to various apoptotic stimuli [56]. It
is possible that Tax directly protects these tumor cells by inducing NF-kB or Akt activation or
other pathways. On the other hand, it is also possible that Tax does exert an initial pro-apoptotic
stimulus, and that tumor cells are derived from cells that have subsequently acquired resistance
to Tax-induced pro-apoptotic signals. In support of such model, thymus atrophy has been
reported in some transgenic models, and was also associated with massive amounts of apoptosis
[88].

Although Tax appears to be required for cell transformation and the inhibition of apoptosis,
ATLL tumor cells do not express detectable levels of Tax [89-91]. Surprisingly, ATLL tumor
cells that lack Tax still retain the characteristics of Tax-expressing cells, and multiple signaling
pathways such as NF-κB are constitutively active in ATLL cells. These observations suggest
that following cell transformation, cellular signaling molecules remain permanently activated
in the absence of Tax. This correlates with the requirement of Tax for the initial transformation
event, but not for the maintenance of the transformed state.

ORFII: the mitochondrial p13 and the regulatory protein p30
Many viruses encode proteins that localize to the mitochondria to modulate this important
apoptotic checkpoint, and HTLV-1 appears to be no exception. The small HTLV protein p13
is a small, 87 amino acid non-structural protein encoded by the XII open reading frame. p13
targets to mitochondria via an N-terminal mitochondrial targeting motif between amino acids
19 and 31 that allows p13 to insert into the inner mitochondrial membrane (Fig. 1)[92]. While
most integral inner membrane proteins of the mitochondria possess classic signal sequences
which are cleaved during protein import, p13 does not appear to be cleaved, leaving the
mechanism of import unknown. The targeting motif is rich in arginine residues and is predicted
to resemble an amphipathic alpha helix, similar to other mitochondrial proteins produced by
RNA viruses. One such alpha-helical protein is the viroporin Vpr from HIV [93]. The
amphipathic alpha-helical nature of Vpr allows it to form cation-selective channels in the
mitochondria membrane. This results in mitochondrial depolarization [93], which is dependent
on the mitochondrial permeability transition pore proteins ANT and VDAC that interact with
Vpr [93]. Other viroporins include HBX from hepatitis B virus and PB1-F2 from Influenza A
virus, which also localize to the mitochondria via short transmembrane domains and induce
mitochondrial alterations leading to apoptosis [94-98]. Although Vpr and HBX induce
cytochrome c release, there is no evidence to suggest that p13 similarly induces cytochrome c
release. p13, however, does appear to sensitize cells to pro-apoptotic stimuli, as p13 expression
has a dose-dependent effect on amplifying apoptosis induced by either anti-Fas or ceramide
[99]. p13 directly interacts with farnesyl pyrophosphate synthetase, which catalyzes the
generation of substrates involved in the Ras pathway [100]. Inclusion of a farnesyl transferase
inhibitor that blocks Ras prenylation also blocks FasL- and ceramide-induced apoptosis in p13-
expressing T-cells [99]. Exactly how p13 modulates apoptosis at the mitochondria is unknown,
although biochemical studies showed that p13 expression induced the loss of the mitochondrial
membrane potential and caused a decrease in the calcium retention capacity of mitochondria
[101]. These events appear to be independent of the permeability transition (PT) pore, as the
PT pore inhibitor cyclosporine A has no effect on p13-mediated PT [101]. This is in contrast
with other viral mitochondrial pro-apoptotic proteins such as Vpr, which interact with
components of the PT pore to directly induce PT [93]. It has been demonstrated that
accumulation of p13 at the mitochondria results in the rounding and fragmentation of the
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mitochondrial network, and is associated with mitochondrial swelling and cristae
fragmentation [101]. Substitution of glutamine for each of the four arginine residues present
in the N-terminal alpha-helix has no effect on p13 localization, but prevents p13-dependent
mitochondrial rearrangement and fragmentation [101]. This may be important since recent
work has implicated the fission and fusion of the mitochondrial network in the regulation of
apoptotic cell death [102-105]. How p13 controls mitochondrial morphology remains to be
investigated. Future work using p13 mutants which localize to but do not induce mitochondrial
rearrangements will help elucidate the mechanism used by p13 to modulate mitochondrial
morphology and establish whether these morphological changes are required for the regulation
of apoptosis or virus virulence.

Another viral protein synthesized from ORFII is p30, which is a post-transcriptional regulator
of translation. p30 expression inhibits the translocation of Tax/Rex mRNA from the nucleus
to the cytoplasm, thereby inhibiting Tax and Rex protein production [106]. While it remains
to be seen, the expression of p30 may alter the ability of Tax and HTLV-1 to modulate
programmed cell death. In cases where high Tax expression is detrimental to the cell, it is
possible that the inhibition of Tax synthesis by p30 decreases the likelihood of apoptosis
induction, thereby facilitating virus latency. Alternatively, since p30 selectively blocks mRNA
nuclear export, p30 expression might somehow inhibit the pro-survival mechanisms that Tax
uses, thereby sensitizing the cell to apoptosis. Microarray analysis examining the effect of p30
on cellular gene expression demonstrated that the expression of a number of apoptosis-related
genes was altered, including genes encoding Mcl-1, A1, Bik, and caspases 2 and 4 [107].
Whether the regulation of any of these apoptotic genes is involved in the modulation of
apoptosis by HTLV-1 remains to be investigated.

ORFI: p12I and IL-2R signaling survival pathway
A hallmark of HTLV-I transformed cells is the constitutive activation of the Jak/STAT (Janus
activating kinase/signal transducer and activator of transcription) pathway [108,109], which
rids infected lymphocytes of their dependence on IL-2 for proliferation and activation. Jak/
STATs are involved in a number of cell processes, from cytokine signaling to the interferon
response. Although various members of the Jak/STAT family have the potential to elicit both
pro- and anti-apoptotic effects, one STAT, STAT5, specifically has anti-apoptotic effects
[110,111]. This includes the up-regulation of anti-apoptotic Bcl-2 family members such as Bcl-
xL and Bcl-2, as well as the down-regulation of caspases 3 and 9 [110].

The HTLV-I non-structural protein p12 from open reading frame I is critical for establishing
viral infection in vivo [112,113]. p12I enhances STAT5 activation by binding the β and γc
chains of the IL-2 receptor, resulting in Jak1/Jak3 activation, STAT5a/b phosphorylation and
nuclear translocation of the STAT5 heterodimer (Fig. 1). p12I increases STAT5
phosphorylation and STAT5 DNA binding in the absence of IL-2 [114]. The STAT5 activation
induced by p12I appears to up-regulate X-linked IAP (XIAP), as the nucleoside analogue
Roscovotine inhibits STAT5 and results in a decrease in XIAP expression in HTLV-1-infected
cells [115].

HBZ: New player on the scene?
Recent research has characterized a novel protein transcribed from the negative strand of the
HTLV-1 genome, HTLV-1 basic leucine-zipper factor, or HBZ [116]. This protein interacts
with transcription factors CREB and those of the Jun family, and impairs the DNA binding
ability of c-Jun [117-119]. As a result, HBZ has the ability to repress transcription of factors
such as AP-1, Tax, and NF-κB. Although HBZ appears to play a repressive role in expression
of certain cellular factors and viral genes, whether HBZ also affects the ability of Tax and other
viral proteins to modulate the apoptotic cascade remains to be investigated.
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Treatment of HTLV-1: Drug-induced apoptosis
To date, a successful therapy for HTLV-1 has remained elusive in that many broad-range cancer
therapies are ineffective. A wide range of combinatorial anti-cancer therapies have been used
in clinical trials with limited degrees of success [120]. Recently, a number of new compounds
and therapies have been shown to specifically induce apoptosis in HTLV-1 and ATLL cells
(see Table 1), and many of these drugs target the aforementioned changes in gene expression
and protein function that are essential for ATLL cell survival.

Considering the importance of NF-κB in ATLL cell survival, one group of drugs being
examined targets the NF-κB pathway. Bay 11-7082 and ACHP, inhibitors of IκB
phosphorylation, and the proteasome inhibitor bortezomib/PS-341 inhibit both HTLV-1 and
Tax-mediated NF-κB activation and induce apoptosis in infected cells [121] [122] [123-126].
Notably, cells treated with bortezomib/PS-341 in the presence of the caspase-inhibitor zVAD-
fmk appear to undergo necrosis instead of apoptosis, indicating that the mechanism of death
is still unclear [123]. The in vivo efficacy of bortezomib, however, remains to be seen, as one
particular clinical trial demonstrated that one ATLL patient did not respond to bortezomib
treatment [127]. The purine analogue Fludarabine also inhibits NF-kB activation resulting in
the induction of apoptosis in HTLV-1-infected cells [128]. An HIV protease inhibitor,
ritonavir, induces apoptosis in HTLV-1-leukemic cells by inhibiting NF-κB activity[129].
While ritonavir has not yet been tested for ATLL, it has shown efficacy in the treatment of
HIV-related AIDS [130]. Altogether, the inhibition of NF-κB signaling appears to be a very
promising target for new and developing HTLV-1-therapies. The role of NF-κB regulation in
ATLL is not unique, as multiple lymphomas, such as Hodgkins disease, MALT lymphomas,
and Kaposi’s sarcoma are associated with the deregulation of NF-κB activity [131].

Arsenic trioxide, alone or in combination with other pro-apoptotic stimuli, has also been
examined as a possible treatment and induces apoptosis in HTLV-1-infected cells lines
[132-134]. While arsenic induces the generation of hydrogen peroxide leading to cytochrome
c release and caspase activation [135], recent work has also suggested that arsenic trioxide
causes cell cycle arrest, NF-κB repression, and the down-regulation of Tax [132-134,
136-138]. Clinical use of arsenic, however, is problematic as there are differences in sensitivity
to As2O3, and arsenic itself is toxic at high doses. Inclusion of polyunsaturated fatty acids such
as docosahexaenoic acid (DHA), which increases ROS production and lipid peroxidation, and
Emodin significantly increases necrotic cell death in HTLV-1-infected cells following
treatment with As2O3 [139]. The use of combinatorial therapies with arsenic may allow for
lower doses of As2O3 to be used.

Other cell signaling pathways that are deregulated in HTLV-1-infected cells have also been
areas for drug development. The purine analogue roscovitine inhibits STAT5 activation and
XIAP expression to induce apoptosis in MT-2 HTLV-1-infected cells [115]. Curcumin, a
natural pigment of the spice turmeric, has been used extensively as an anticancer drug, and
treatment of HTLV-1-infected cells with curcumin induces apoptosis by targeting the Akt-
survival pathway or the Jak/STAT pathway [140-143]. Results suggesting that a specific Jak-
inhibitor, AG-490, induces cell cycle arrest, however, are controversial [141,144]. The
genldanamycin derivative 17-AAG inhibits the activity of heat shock protein 90 (Hsp90), and
is able to induce apoptosis in primary ATLL cells [145]. Although there is no clinical data for
the use of 17-AAG in ATLL patients, 17-AAG has been successfully tested in a phase I clinical
trial for various other malignancies [146].

ATLL cells are often characterized by the overexpression of specific cell surface markers, and
a number of monoclonal antibodies have correspondingly been developed with the intention
of inducing cell death. One early antibody therapy attempted was the use of anti-Fas
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[147-149]. Despite early success, however, the efficacy of anti-Fas in providing long-term
remission was inadequate for clinical use. Other monoclonal antibody therapies directed at the
overexpressed IL-2 receptor (CD25) have shown a greater degree of promise[150-152]. Early
clinical trials with the antibody anti-Tac, which is directed against the IL-2α receptor,
demonstrated limited success, although recent developments using a Yttrium-90-radiolabeled
antibody has exhibited an increased activity against ATLL cells [150,151,153-155]. Anti-
IL-2Rα antibody, in conjunction with bortezomib/PS-341 treatment was able to elicit the
complete remission in ATLL-tumour-bearing mice [156], again demonstrating the efficacy of
a combinatorial therapy. A major positive for anti-Tac therapy is the low level of side-effects,
which is in stark contrast to standard chemotherapy reagents. More recently, other monoclonal
antibodies have been directed at CD52 and the transferrin receptor, both of which are also
overexpressed in HTLV-transformed cells [157-159].

Another class of pro-apoptotic drugs being investigated to treat ATLL targets the cell cycle.
Retinoic acids induce apoptosis in HTLV-1-infected cells and ex vivo ATL cells [160-162],
primarily by inducing cell cycle arrest. One retinoic acid, N-(4-hydroxyphenyl) retinamide,
induced the dramatic death of malignant ATL, and was associated with elevated ceramide
levels leading to cell cycle arrest and Bax activation [163]. Although there are specific effects
on gene expression, these retinoids ultimately induce cell death through the mitochondrial
pathway which is regulated by Bcl-2 [164]. A number of other retinoids have also been
documented to induce apoptosis in HTLV-I-infected cells [165-169]. Perhaps the most-studied
anti-retroviral drug is zidovudine (AZT), which is used extensively to treat HIV-1-infected
individuals. Despite early reports suggesting that zidovudine provided some level of anti-
cancer effect in ATL patients [170,171], ATL cells do not appear to exhibit a high degree of
apoptosis in response to zidovudine, even in combination with IFNα [172], and the mechanism
of inhibition is likely through telomere attrition and reactivation of a p53-dependent senescent
pathway [79,173,174].

Considering the extensive work performed in pursuit of new potential therapies, it is of note
that certain members of the multi-drug resistance (MDR) protein family are up-regulated in
HTLV-1-infected cells and ATLL patients [175-177]. Adaptations such as these may dictate
the relative sensitivity to various drug therapies for ATLL patients, and should be noted when
promising new emerging therapies are investigated.

Concluding Remarks
Like many viruses, HTLV-1 modulates the apoptotic pathway using multiple tactics, ranging
from Tax-mediated modulation of gene expression and the cell cycle, to STAT activation by
p12, to the regulation of the mitochondria by p13. Future work will hopefully further expose
the specific mechanisms used by HTLV-1 to control cell death, and these investigations will
aid in our understanding of the pathology of HTLV-1-infection and ensuing ATLL.
Therapeutic strategies aimed at inducing virus-infected cell death must consider the fact that
not all deaths are equal. Necrotic cell death results in an inflammatory response, while
apoptosis, in contrast, is a tightly controlled process that does not lead to inflammation. The
ability of HTLV-1-infected ATLL cells to resist apoptosis likely greatly contributes to the
development of ATLL. In contrast, the pathogenesis of TSP/HAM is associated with high
inflammation and hyper-immune responses [12]. Taking these findings into considerations,
whether it is beneficial to induce either apoptosis in TSP/HAM and necrotic cell death in ATLL
patients has not been addressed. The development of new therapies to treat HTLV-1-infected
patients diagnosed with ATLL or TSP/HAM may hinge upon the ability of new drugs or
combinatorial therapies to specifically induce death in HTLV-1-infected T cells in vivo.
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Figure 1.
Proteins encoded by HTLV type I. Multiple differentially spliced mRNA molecules transcribed
from the genome of HTLV-1 encode for a dozen known proteins, with transcription initiated
via the long terminal repeat (LTR). Homologues of proteins such as Gag, Pol (polymerase),
Pro (protease), and Env (envelope protein) are also found in other retroviruses such as HIV,
and are responsible for virus replication and virion formation. The remaining non-structural
proteins characterized to date, such as Tax, Rex, p13, p12, p30, p21Rex and HBZ, are unique
proteins translated from the pX region of the viral genome, and their localization is shown at
right. Proteins shaded in grey have been shown to play either a direct or indirect role in
modulating the apoptotic cascade in HTLV-1-infected cells.
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Figure 2.
Apoptotic regulatory pathways interrupted by HTLV-1 proteins. The viral oncoprotein Tax
inactivates the inhibitors of κB through the activation of IKK, resulting in IκB phosphorylation
and degradation, and the release of NF-κB. NF-κB is free to translocate to the nucleus to induce
the transcription of pro-survival genes. Tax also stimulates the constitutive activation of Akt,
resulting in the activation of β-catenin and AP-1 transcriptional pathways, leading to the up-
regulation of additional anti-apoptotic genes. The small viral protein p12 has been shown to
interact with the IL-2 receptor (IL-2R), thus stimulating Jak-recruitment. This leads to the
phosphorylation, dimerization, and nuclear translocation of STAT5 to facilitate the up-
regulation of pro-survival gene products. The HTLV-1 protein p13 localizes to the inner
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mitochondrial membrane where it may play a role in mitochondrial morphology and regulation
of the permeability transition (PT) pore.
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Figure 3.
Cellular pathways targeted by drugs which induce apoptosis in HTLV-1-infected cells. Drugs
used to induce apoptosis in HTLV-1 and ATLL cells in vitro have targeted various aspects of
the NF-κB pathway, such as inhibition of the proteasome, inhibition of the IKK complex, and
inhibition of nuclear translocation of NF-κB. Other drugs have been used to target the cell
cycle by stabilizing p53 or by inducing cell cycle arrest. Inhibitors of gene transcription have
targeted STAT5 and the downregulation of various anti-apoptotic proteins. More recently, a
number of monoclonal antibody therapies have targeted cell surface proteins upregulated in
HTLV-1-infected cells, such as the IL-2 receptor, transferrin receptor, and CD52.
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Table 1
Drugs which induce apoptosis in HTLV-1-infected cells

Drug Target Drug Name Class Predicted Mechanism of
Action

References

NF-κB Bortezomib/PS-341 Proteasome inhibitor Stabilizes IκB, p21, p53 and
Tax; ceramide induction

[123-125,156,178]

ACHP Inhibits IKK activity [122]

Bay 11-7082 Inhibits IKK activity [121]

Fludarabine Purine analogue Inhibits NF-κB nuclear
translocation

[128]

NIK-333 Synthetic retinoid Cell cycle arrest, NF-κB
inhibition, IAP down-
regulation

[179]

Ritonavir Protease inhibitor Inhibits NF-κB [129]

DHMEQ Epoxyquinomycin derivative Inhibits NF-κB, p65 nuclear
translocation

[180,181]

Galectin-9 (modified protease
resistant)

Lectin Inhibits IκB phosphorylation [182]

FR901228/depsipeptide Histone deacetylase inhibitors Inhibits NF-κB and AP-1
DNA binding

[183]

Capsaicin Capsaicinoid Upregulation of IκBα, Tax
degradation

[184]

L-lysine Inhibits p65 NF-κB subunit [185]

As2O3 + IFNα NF-κB inhibition,
stabilization of IκBα, cell
cycle arrest, Tax down-
regulation

[132-134,136-138,186]

Adenosine-2,3-dialdehyde (Adox) adenosine analog,
methyltransferase inhibitor

IKK degradation, p53
reactivation, cell cycle arrest

[187]

Reactive Oxygen Species DHA Polyunsaturated fatty acid ROS production, in
combination with As2O3 and
emodin

[139]

Emodin Anthraquinone ROS production, in
conjunction with As2O3 and
DHA

[139]

Cell cycle ATRA, 9-cis-RA, 13-cis-RA, Retinoic acids Cell cycle arrest, ceramide
accumulation

[160,161,163]

Ascorbic acid Inhibition of proliferation,
alterations in gene expression

[188]

LY294002 PI3 kinase inhibitor PI3 kinase inhibitor, inhibits
AKT activation

[189]

Epigallocatechin-3-gallate Antioxidant Induces cell cycle arrest [190]

EAPB0203 imidazo[1,2-a]quinoxalines Induces cell cycle arrest, p53
stabilization

[191]

Gene Expression Fucoidan Polysaccharide Inactivates NF-κB and AP-1 [192]

Resveratrol Polyphenol Downregulation of survivin [193]

DCQ Heterocylic aromatic antimicrobial Upregulation of TGF-β1,
p53, p21

[194]

Roscovitine Purine analogue Inhibits STAT5 activity [115]

17-AAG Geldanamycin derivative Inhibitor of Hsp-90 [145]

Curcumin Polyphenol Inhibits AP-1, NF-κB, AKT,
induces cell cycle arrest

[142,143]

Valproate Histone deacetylase inhibitor Transcriptional activation [195,196]
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Drug Target Drug Name Class Predicted Mechanism of
Action

References

MS-275, SAHA, LBH589 Histone deacetylase inhibitors Inhibits NF-κB nuclear
translocation

[197]

Dihyrdoflavanol BB-1 Increase in TRAIL-R2
expression

[198]

Celecoxib COX-II inhibitor Inhibits Akt activation [199]

Epican Forte Nutrient formula Induces p53, p21, Bax;
Downregulates Bcl-2

[200]

AG490 Tyrosine kinase inhibitor Inhibits Jak/STAT pathway [141]

Cell surface proteins Anti-Tf receptor Binds to overexpressed
transferrin receptor

[152,158]

Anti-IL-2Rα (CD25) Interacts with overexpressed
IL-2 receptor

[150,151,155,201]

Anti-CD52 Interacts with overexpressed
CD52

[157]

17-AAG, geldanaymcin derivative; ACHP, 2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-piperidin-4-yl nicotinonitrile; ATRA, all-trans-
retinoic acid; COX-II, cyclooxygenase II; DHA, docosahexaenoic acid; DHQ, 2-benzoyl-3-phenyl-6,7-dichloroquinoxaline 1,4-dioxide; DHMEQ,
dehydroxymethyleopxyquinomicin; Hsp, heat shock protein; IAP, inhibitor of apoptosis; IFN, interferon; IKK, inhibitor of κB kinase; IL, interleukin;
RA, retinoic acid; ROS, reactive oxygen species; STAT, signal transducer and activator of transcription; Tf, transferrin; TGF, transforming growth factor;
TRAIL, TNF-related apoptosis-inducing ligand.
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