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Does Learned Shape Selectivity in Inferior Temporal Cortex
Automatically Generalize Across Retinal Position?
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Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
02139

Biological visual systems have the remarkable ability to recognize objects despite confounding factors such as object position, size, pose,
and lighting. In primates, this ability likely results from neuronal responses at the highest stage of the ventral visual stream [inferior
temporal cortex (IT)] that signal object identity while tolerating these factors. However, for even the apparently simplest IT tolerance
(“invariance”), tolerance to object position on the retina, little is known about how this feat is achieved. One possibility is that IT position
tolerance is innate in that discriminatory power for newly learned objects automatically generalizes across position. Alternatively, visual
experience plays a role in developing position tolerance. To test these ideas, we trained adult monkeys in a difficult object discrimination
task in which their visual experience with novel objects was restricted to a single retinal position. After training, we recorded the spiking
activity of an unbiased population of IT neurons and found that it contained significantly greater selectivity among the newly learned
objects at the experienced position compared with a carefully matched, non-experienced position. Interleaved testing with other objects
shows that this difference cannot be attributed to a bias in spatial attention or neuronal sampling. We conclude from these results that, at
least under some conditions, full transfer of IT neuronal selectivity across retinal position is not automatic. This finding raises the
possibility that visual experience plays a role in building neuronal tolerance in the ventral visual stream and the recognition abilities it
supports.
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Introduction
The key computational challenge in visual object recognition is
that any given object in the external world can cast a nearly infi-
nite number of different images on the retina depending on a
variety of factors, including object position, size, pose, lighting,
the presence of other objects, etc. Thus, a successful visual repre-
sentation must tolerate wide variation in object images while
remaining sensitive to differences between different objects. This
problem is called the “object constancy” or “invariance” problem
and, although it remains one of the primary stumbling blocks in
the creation of robust artificial vision systems, primate brains
solve it effortlessly. Neurons in the highest stage of the primate
ventral visual pathway, the inferior temporal cortex (IT) (Van
Essen et al., 1992), respond selectively to complex visual features
(Desimone et al., 1984; Sheinberg and Logothetis, 1997; Tsunoda
et al., 2001), while maintaining their selectivity across confound-

ing factors such as retinal position and size (Tovée et al., 1994; Ito
et al., 1995; Logothetis et al., 1995). Because populations of such
neurons can support tolerant recognition behavior (Hung et al.,
2005), it appears that the invariance problem has largely been
solved by the ventral visual pathway. However, little is known
about how this solution is achieved.

One possibility is that innate mechanisms allow object selec-
tivity to transfer automatically across retinal positions (Ol-
shausen et al., 1993). An alternative possibility is that tolerance to
identity-preserving retinal image transforms is learned from ex-
perience with the statistics of the natural visual world, especially
during early visual development, and perhaps into adulthood.
Consistent with this idea, some theorists have suggested that tol-
erance to retinal position, arguably the simplest transform that
the visual system must tolerate, may depend on visual experience
(Foldiak, 1991; Wallis and Baddeley, 1997; Ullman and Soloviev,
1999; Wiskott and Sejnowski, 2002). Although this idea has never
been tested in high-level neuronal object representations, several
psychophysical efforts have shown that recognition performance
from visual experience at one retinal position does not always
automatically transfer to other positions (Nazir and O’Regan,
1990; Dill and Fahle, 1997, 1998; Dill and Edelman, 2001; Cox et
al., 2005). These studies suggest that, at least under some condi-
tions, position-tolerant object representation is not automatic
but may depend on visual experience with objects or object fea-
tures at multiple retinal positions.

Because no previous study had examined the role of visual

Received May 10, 2008; revised August 25, 2008; accepted August 27, 2008.
This work was supported by the National Institutes of Health (Grant NIH-R01-EY014970 to J.J.D.). Additional

support was provided by The Pew Charitable Trusts and The McKnight Endowment for Neuroscience. D.D.C. was
supported by a National Defence Science and Engineering Graduate Fellowship. We thank N. Kanwisher, J. Maunsell,
and P. Sinha for early comments on this work, N. Li and N. Majaj for comments on this manuscript, and J. Deutsch, P.
Mayo, M. Fogerson, and R. Marini for technical support.

Correspondence should be addressed to James J. DiCarlo, McGovern Institute for Brain Research, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. E-mail: dicarlo@mit.edu.

D. D.Cox’s present address: The Rowland Institute at Harvard, 100 Edwin Land Blvd., Cambridge MA, 02142.
e-mail: cox@rowland.harvard.edu.

DOI:10.1523/JNEUROSCI.2142-08.2008
Copyright © 2008 Society for Neuroscience 0270-6474/08/2810045-11$15.00/0

The Journal of Neuroscience, October 1, 2008 • 28(40):10045–10055 • 10045



experience on IT position tolerance, the goal of this study was not
to elucidate how experience might build position tolerance, but
to first ask whether newly learned IT neuronal shape selectivity
automatically generalizes across retinal position. If we found au-
tomatic generalization, this would suggest that experience does
not play a role in building IT position tolerance. To test this, we
followed the logic of previous human psychophysical studies
(Nazir and O’Regan, 1990) in that we provided experience with
novel objects at one retinal position. After several weeks of expe-
rience with these objects, we performed an extensive series of IT
recordings to obtain an unbiased measure of IT neuronal selec-
tivity among those objects at both the experienced position and
an eccentricity-matched, non-experienced position. In this key
comparison, we found significantly greater selectivity at the ex-
perienced position, suggesting that newly learned object selectiv-
ity does not automatically transfer to new positions. We used an
independent set of interleaved objects to show that this result
cannot be explained by attentional bias or neuronal sampling
bias. This result suggests that IT shape selectivity created at one
retinal position is not automatically propagated equally across
the visual field. Thus, the well known position tolerance of shape
representations in the adult brain may ultimately depend on vi-
sual experience.

Materials and Methods
Animals. Two adult rhesus monkeys were used in this study (weights at
start: monkey M �6 kg; monkey P �7 kg). After acclimation to the
laboratory environment, but before training with the shape sets (Fig. 1a),
aseptic surgery was performed to implant a head post and scleral eye coil
(Robinson, 1963) in each animal. Surgical procedures, eye monitoring,
and recording methods were performed using standard techniques (Di-
Carlo and Maunsell, 2000), and in accordance with the Massachusetts
Institute of Technology Committee on Animal Care.

Visual stimuli. Isolated objects were presented during training and
testing (see below) on a cathode ray tube monitor (43.2 � 30.5 cm; 75 Hz
frame rate; 2048 � 1280 pixels) placed 48 cm from the animal so that it

subtended �48° azimuth and 35° elevation. A total of eight white shapes
were constructed for the experiment (two sets of four), always presented
on a gray background (27 Cd/m 2). The “restricted-experience” object set
consisted of four filled-in full-luminance white (57 Cd/m 2) shapes hav-
ing contours that were defined by a nonuniform rational B-spline (Fig.
1a). These four shapes were constructed such that each shape was formed
by the conjunction of one of two possible left sides, and one of two
possible right sides, with the full set of four shapes defined by the 2 � 2
cross of those features (i.e., Left1 � Right1, Left1 � Right2, Left2 � Right1,
and Left2 � Right2). This design was intended to thwart any attempt to
discriminate among the shapes using spatially local features (same logic
as that used by Baker et al., 2002). Importantly, each shape was vertically
symmetric so that it was equally discriminable when presented above and
below the center of gaze (the two main experimental retinal positions)
(see below). Thus, these objects provided our key experimental control: a
comparison of responses to the exact same objects at two retinal positions
(one highly trained, one untrained) (Fig. 1a) (see below).

To test for any potential spatial attention bias or receptive field (RF)
sampling bias, we also used a “bias test” object set that consisted of four
filled-in full-luminance white (57 Cd/m 2) geometric shapes (circle,
cross, star, and triangle) (Fig. 1a). These objects were not intended to
serve as a shape control for the restricted-experience objects (indeed,
these shapes are easier to discriminate), because the main control in our
experiment is an identical object set at an eccentricity-matched retinal
position (restricted-experience objects) (see above). Instead, these bias
test objects were: 1) used to search for visually responsive neurons so that
our neuronal data would be completely unbiased with respect to the
restricted-experience objects, and 2) were used as a sensitive assay for any
possible bias in spatial attention or coincidental receptive field bias in our
sampled neuronal population. All eight shapes (four restricted-
experience objects and four bias test objects) were scaled such that they fit
within a 2° circle.

Behavioral tasks. All behavioral training and testing was done using
standard operant conditioning (juice reward) with the head stable rela-
tive to the viewing monitor (head post fixation) and with high-accuracy,
real-time eye tracking (eye coil) (Robinson, 1963; DiCarlo and Maunsell,
2000). A “discrimination task” was used to train the animals to discrim-
inate among the four objects in each of the two object sets during the

Figure 1. Experimental design. a, Schematic illustration of the two main experimental positions on the retina and the two sets of visual objects. Monkeys first learned to discriminate among the
four objects in the bias test set (easier than the restricted-experience objects) (see Materials and Methods). Monkeys were then trained to discriminate among the four objects in the restricted-
experience set, for which presentation was restricted to a single retinal position (monkey M,�2°, shown here in red; monkey P,�2°). The key experimental question was whether selectivity among
these newly learned objects was found at both the trained position (red) and the nontrained position (blue). b, Top, A schematic time sequence of an example trial of discrimination training during
the experience phase of the experiment (not drawn to scale). Yellow circle indicates gaze position during a typical trial. The animal initiated a trial by fixating a central point, after which a single object
was presented. If the animal attempted to saccade toward the object, it was removed from the display. The animal was allowed to report the identity of the object by directly saccading to one of the
four lighted response targets at the corners of the monitor (yellow arrow), and correct reports were immediately rewarded. The mapping between object identity and the correct response corner was
never changed (see Materials and Methods). Bottom, A schematic time sequence of an example trial during the probe phase of the experiment in which neuronal responses were recorded (not drawn
to scale). The monkey initiated a trial by fixating a central point and was then only required to maintain that gaze position while 5–10 stimuli were presented at 200 ms intervals. On each trial, these
stimuli were objects drawn randomly from both the restricted-experience object set and the bias test object set (see Materials and Methods for details).
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“experience phase” of the experiment (Fig. 1b). One object was presented
on each trial, and the animal reported the object’s identity using an eye
movement (saccade) to one of four lighted response positions in the four
corners of the monitor (the mapping between object identity and the
correct response position never changed) (same task used by DiCarlo and
Maunsell, 2000, 2003). Each behavioral trial proceeded as follows. The
monkey initiated a trial by fixating a central point (a 0.25° width square)
within a �0.25– 0.5° square window. After 100 –300 ms, a single object
was presented for 100 ms at a predetermined retinal position (see below).
When objects were presented away from the center of gaze (e.g., 2° above
or below the center of gaze), both animals sometimes saccaded toward
the object center (as described by DiCarlo and Maunsell, 2003). How-
ever, because we monitored the animal’s eye position in real time, we
always removed the object from the display before that saccade ended
(for details, see DiCarlo and Maunsell, 2003). The animal was allowed to
continue the trial and report the object’s identity by immediately saccad-
ing to the correct response corner (Fig. 1b). After the object presentation,
saccades to positions other than the center of the (removed) object, or to
one of the response corners, resulted in the trial being aborted immedi-
ately (and counted as incorrect). Correct reports were always immedi-
ately rewarded with a brief high-pitched tone and a few drops of juice; a
non-aversive low-pitched tone was immediately played after incomplete
trials or incorrect responses.

During the experience phase, trials were run in blocks of restricted-
experience objects only, or bias test objects only. restricted-experience
objects were always presented only at the restricted (“trained”) position
(2° above the center of gaze for monkey M, 2° below center of gaze for
monkey P). We focused on position changes across elevation rather than
azimuth because of the known azimuthal bias of IT neurons (Op de
Beeck and Vogels, 2000). For bias test objects, each object appeared
randomly, equally often at each of the three positions (2° above center of
gaze, 2° below center of gaze, and at the center of gaze). Monkeys first
learned to perform the task with the bias test objects presented at a range
of positions (with approximately equal experience with these objects at
the two key experimental positions). They subsequently learned the task
with the restricted-experience objects at the trained position.

A “fixation task” was used during the collection of all neuronal data
during the probe phase of the experiment (Fig. 1b, bottom). On each
behavioral trial, monkeys were required to fixate a small central point
(0.25°, colored blue) while 5–10 objects drawn from both the bias test set
and the restricted-experience set were presented in pseudorandom order
and random positions. That is, all conditions were fully interleaved
(stimulus-by-stimulus). The restricted-experience objects could appear
at the trained position, the center of gaze, and the non-trained position,
and the bias test objects could also randomly appear at these same three
positions, as well as at other positions within the central 10° of the visual
field. Furthermore, the stimulus conditions were counterbalanced such
that each of the main experimental conditions occurred equally often in
each serial position of the sequence presented on each trial. Each object
was presented for 100 ms followed by an interstimulus interval of 100 ms
(Fig. 1b). This rate of five objects per second is roughly comparable with
the timing of spontaneously generated saccades during recognition tasks
(DiCarlo and Maunsell, 2000), and well within the time frame that allows
accurate object recognition (Potter, 1976).

After the collection of all neuronal data (below), additional behavioral
testing was performed on monkey M. The monkey performed an active
discrimination task similar to the discrimination training task (above),
with several modifications. (1) The restricted-experience objects were
presented equally often at both the trained and non-trained position, and
these trials were not rewarded. (2) To monitor the distribution of spatial
attention (behaviorally assessed here) to the trained and non-trained
position, these restricted-experience object trials were randomly inter-
leaved among trials using the bias test objects at both the trained position
and the non-trained position (correct trials were rewarded). (3) To make
the task more demanding and avoid ceiling effects, the bias test objects
were presented at reduced contrast (10%; titrated by pre-piloting runs
targeting �75% correct performance level). Interleaved bias test object
trials outnumbered the unrewarded restricted-experience object trials
four to one.

Neuronal recording. Single-unit recordings were made using standard
methods (Zoccolan et al., 2005). Briefly, on each recording day, a single-
metal, extracellular microelectrode was advanced through a 26 gauge
guide tube into IT cortex. Using both structural magnetic resonance
images and gray-white physiological transitions, electrode penetrations
were focused on the anterior part of IT (Horsely-Clark coordinates: 12.5–
19.5 mm anterior, 16 –24 mm lateral), on the ventral superior temporal
sulcus and the ventral surface of the inferior temporal gyrus, at or lateral
to the anterior middle temporal sulcus. To carefully guard against possi-
ble neuronal selection bias, monkeys performed the discrimination task
(above) with only objects from the bias test object set presented ran-
domly and equally often at positions 2° above the center of gaze, 2° below
the center of gaze, and at the center of gaze, while we advanced the
electrode and isolated active neurons. All isolated neurons that were even
weakly responsive to visual stimuli (any of the bias test objects, in any
position) during this task (t test, p � 0.05, uncorrected) were further
studied with the main battery of position tolerance tests using the fixa-
tion task and both sets of objects (probe phase) (Fig. 1a). Between 10 and
30 repetitions of each object in each tested position were presented while
recording from each IT neuron (5–10 stimuli were presented on each
behavioral trial in the probe phase). Over �90 recording sessions, we
recorded from 216 well isolated anterior IT neurons in the two monkeys
(151 cells in monkey M and 65 in monkey P).

Data analysis. For all of the neuronal analysis described in this study
(except Fig. 6), we computed spike counts over a standard time window
of 100 –200 ms poststimulus onset for each presentation of each stimulus
condition (DiCarlo and Maunsell, 2000, 2003). The start of this time
window is based on the well known latency of IT neurons (Baylis and
Rolls, 1987), and the end time is well below the reaction times of monkeys
performing object discrimination tasks (the median reaction time in the
object discrimination task in this study was 289 ms from stimulus onset;
monkey M, 286 ms; monkey P, 294 ms), and is thus consistent with an
integration window that could, in principle, be used by downstream
neurons to extract object information (DiCarlo and Maunsell, 2000;
Hung et al., 2005). To include the response data for all four objects in an
unbiased index of selectivity for each neuron, we computed the F ratio on
the spike counts [the total variance between groups (objects) divided by
the total variance within groups] (Snedecor and Cochran, 1967) (Fig.
2a). Spike counts were first variance stabilized [square root assuming
Poisson spiking statistics (Snedecor and Cochran, 1967), but results were
nearly identical without such stabilization]. We also computed the
“best”-“worst” selectivity (response difference among two objects) using
split-half data to assign the label best and worst to two of the four objects
(described further in Results). The statistical selectivity ( p value) of each
neuron among each set of four objects at each position was assessed using
one-way ANOVA (with object identity as the factor) and standard
d-prime (described in supplemental Fig. S1, available at www.jneurosci.
org as supplemental material).

To assess the information that would, in principle, be available to
downstream neurons, we used standard methods to construct Fisher
linear discriminant classifiers on IT population responses to perform a
four-way discrimination task analogous to the task performed by the
monkeys (Duda et al., 2001). In particular, for each set of four objects and
each retinal position, we constructed four binary classifiers (e.g., “trian-
gle” vs “no triangle”), and the overall report of object identity was taken
to be that of the classifier with the strongest response (four-way classi-
fier). For this analysis, we focused on the population of neurons that were
selective to at least a p � 0.1 (ANOVA) level, and for which there were at
least 20 trials collected (21 neurons; monkey M, n � 13; monkey P, n �
8). The responses of these neurons during the period from 100 to 200 ms
were assembled into response vectors that served as labeled training data
for the classifiers. To assess performance, a leave-one-out cross-
validation procedure was used, wherein a four-way classifier was trained
using all of the data except one trial, and then tested on that one trial; this
process was then iterated through the data set such that each trial served
as the “test” trial in turn. Because the neuronal data were collected seri-
ally, one neuron at a time, there was no special correspondence between
any given trial from one neuron and any given trial from another. To
avoid the classifiers learning spurious correlations between the responses
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of individual neurons, before constructing pop-
ulation training vectors, we randomly shuffled
the training trial order for each neuron 20
times. Thus, on one shuffle, trial 1 from neuron
1 might be paired with trial 14 from neuron 2,
and trial 6 from neuron 3, etc. In all cases, the
trial that was withheld for cross-validation did
not participate in this shuffling, maintaining
the integrity of the cross-validation scheme.

Results
We investigated the effect of visual experi-
ence on position tolerance of IT neurons
by training two monkeys in a novel-object
identification task, using real-time eye
tracking to restrict visual experience with
those objects to a single retinal position.
Specifically, during the experience phase
of the experiment, each monkey was
trained to identify each of four novel visual
objects (the restricted-experience objects)
(Fig. 1a) by making an eye movement to
one of the four corners of the display
screen (a four-choice task) (Fig. 1b). Mon-
key M only saw each object 2° above the
center of gaze, whereas monkey P only saw
each object 2° below the center of gaze;
attempts to saccade to the object always
resulted in it being removed from the dis-
play before the saccade landed (see Mate-
rials and Methods). In an effort to start
from a relative “blank slate,” the four ob-
jects were chosen such that it was unlikely
that the animals would have had previous
experience seeing or discriminating simi-
lar objects in the past. In addition, the ob-
jects were constructed such that the ani-
mals could not solve the task by focusing
on any one local feature (similar to the
study by Baker et al., 2002) (see Materials
and Methods). Each monkey received
30 – 60 training sessions to achieve
80 –90% correct performance (chance �
25%) with these objects (roughly 20,000 –
30,000 retinal exposures of each object).
To test for possible neuronal sampling bias
and spatial attention bias (see below), both
monkeys were also trained on a second set
of four bias test objects that were shown
equally often at 2° above, 2° below, and at
the center of gaze (Fig. 1a). These objects
were chosen to have greater within-object-
set shape discriminability so that neurons
would be more likely to respond to one or
more of them and thus provide a sensitive
assay of any neuronal sampling bias or
spatial attention bias.

After the experience phase, animals en-
tered the probe phase of the experiment during which the posi-
tion tolerance properties of each monkey’s IT neuronal popula-
tion were assessed via single-unit microelectrode recording (see
Materials and Methods). To control for the well known differ-
ences in retinal sampling density, we aimed to compare neuronal

selectivity at the trained retinal position (e.g., 2° above center of
gaze) with an eccentricity-matched nontrained position (e.g., 2°
below center of gaze; nontrained position (Fig. 1). To ensure an
unbiased neuronal population sample, we searched for active IT
neurons while the animal identified objects [i.e., performed the
discrimination task (Fig. 1b)] from the bias test object set (n �

Figure 2. Selectivity of the entire population of IT neurons among the restricted-experience objects. a, Each point shows the
selectivity of a single IT neuron measured at both the trained position (ordinate) and the nontrained position (abscissa). Selectivity
was computed using a standard index that takes into account all of the response data for these objects collected at each position
(F ratio) (see Materials and Methods). The gray region highlights the fact that many IT neurons had little or no selectivity among
these objects (see Results). b, Driven responses of an IT neuron (indicated by letter “A” in a) that showed selectivity at the trained
position (�2° for this monkey), but little selectivity at the nontrained position (�2°). Each line shows the average poststimulus
spiking response to each object (presented at time 0 for 100 ms duration) (Fig. 1b) (a 100 ms sliding boxcar is applied to the binned
spike counts). Object identity is indicated by color (and the numbers refer to the object identity numbers shown in Fig. 1a). Gray
boxes indicate the standard time window used for all analyses (see Materials and Methods). c, Data from eight example neurons
(indicated by letters in a). Each plot shows the mean response of one neuron to each of the four objects presented in each position
(filled bars, trained position; open bars, nontrained position). Dashed line is mean firing rate in the 100 ms window on each trial
just before stimuli were presented. For clarity, in each plot, object identity is rank-ordered according to the response in the trained
position (different neurons generally prefer different objects) (data not shown here), and the same object identity order is used for
the nontrained position.
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216 neurons) (see Materials and Methods). All isolated neurons
that were even weakly visually responsive to at least one of these
bias test objects at any position ( p � 0.05, t test, uncorrected; n �
91) were subjected to further testing with both the restricted-
experience object set and the bias test object set at both of the key
retinal positions and the center of gaze, and were included in the
results presented here. During this neuronal testing, we sought to
limit potential spatial attention effects in the responses (Reynolds
et al., 2000; Maunsell and Cook, 2002) and to minimize the pos-
sibility that visual exposure to the objects during testing might
work against the position-biased experience we provided in the
experience phase (above). To do this, the monkey was not in-
structed to perform the active recognition task but, instead, it was
simply required to fixate a dot in the center of the screen while
randomly interleaved objects from both the restricted-experience
and bias test sets were presented at a rapid rate (5 objects per
second, 100 ms duration each) at randomly interleaved positions
(2° above and below the center of gaze, and at the center of gaze)
(Fig. 1b, fixation task) (see Materials and Methods). All of the
neuronal data presented in this study were collected during this
task. Later, we revisit this design to consider the question of spa-
tial attention in detail.

Our primary goal was to examine the IT population for evi-
dence of selectivity among the restricted-experience objects and
to compare any such selectivity at the two key experimental po-
sitions (�2° and �2°) (see Materials and Methods). To start, we
computed a well established index of neuronal selectivity for each
neuron (F ratio) that takes into account all of the data collected
from the neuron (the F ratio is the underlying measure used for
ANOVA statistics; it measures the amount of difference in re-
sponse to the four objects and is zero if all four objects give the
same response) (see Materials and Methods). We then plotted the

selectivity of each IT neuron among the
restricted-experience objects at the trained
position and at the nontrained position (Fig.
2a). This plot revealed that most IT neu-
rons showed little selectivity among these
four difficult-to-discriminate, restricted-
experience objects (Fig. 2a, neurons in
lower left) (75% of the neurons were not
individually statistically selective among
these objects at either position at p � 0.1,
ANOVA). This small number of restricted
object-selective neurons is not surprising
because the population sample we ob-
tained was completely unbiased with re-
spect to these four restricted-experience
objects (above) (see Materials and Meth-
ods). That is, because (1) it is unlikely that
a large set of IT neurons will encode this
particular set of four objects (i.e., leaving
representational capacity for other ob-
jects) and (2) the restricted experience ob-
jects were never presented while search-
ing/screening for responsive neurons (i.e.,
no selection bias), it is expected that the
population sample would contain only a
minority of neurons with statistically sig-
nificant selectivity among these four simi-
lar objects (Fig. 1a). Nevertheless, Figure
2a suggests that, among the IT neurons
that do have discriminatory power among
these objects, more power is available at

the trained position (compared with the eccentricity-matched,
nontrained position). That is, the most selective neurons tend to
lie above the diagonal of Figure 2a, rather than along the diago-
nal. Figure 2b,c shows the responses of eight such neurons to the
four restricted-experience objects.

To quantify this difference in selectivity across retinal posi-
tions, we first asked: How many neurons are (individually) sta-
tistically selective among the four restricted-experience objects at
each position? To answer this, we applied an ANOVA (object
identity as the main factor) to the responses obtained at the two
key experimental positions (�2° and �2°). This revealed that,
although only a small fraction of the IT population in each mon-
key was selective among the restricted-experience objects, each
monkey’s IT contained a higher fraction of neurons that were
selective among the restricted-experience objects at the trained
position (relative to the eccentricity-matched nontrained posi-
tion). This was found even though one monkey experienced these
objects at the upper retinal position and the other monkey expe-
rienced them at the lower retinal position (Fig. 3). Figures 3a and
4a show that the difference in selectivity at the two positions did
not strongly depend on the p value used to define “selective”
neurons by the ANOVA. Here, the ANOVA p value is simply a
measure of selectivity that takes into account all of the data and
the response variance of each neuron. But this difference in selec-
tivity was also found using a simple d-prime measure of selectiv-
ity (best vs worst) (see supplemental Fig. S1, available at www.
jneurosci.org as supplemental material). Overall, a significantly
( p � 0.0147, � 2 test) greater proportion of selective neurons was
observed at the trained position, relative to the eccentricity-
matched nontrained position (Fig. 4a).

Although the above analysis shows that there are more IT
neurons selective among the restricted-experience objects at the

Figure 3. a– b, IT selectivity among the restricted-experience objects (a) and bias test objects (b) for each monkey. a, Red
points indicate the fraction of IT neurons selective among the restricted-experience objects at the trained position (counterbal-
anced across the two monkeys as shown). Blue points show selectivity within the same object set at the eccentricity-matched,
nontrained position. Selectivity was determined by ANOVA (see Materials and Methods), and a range of significance levels ( p
values) used for deeming a neuron to be selective is indicated. Note that in all cases, both monkeys showed a tendency for more
selectivity at the trained position (red), relative to the nontrained position (blue). b, Same conventions as in a for the bias test
objects (Fig. 1a) presented at the same two retinal positions (filled green squares indicate the position that was trained with the
restricted-experience objects). Please note that, because the bias test objects were chosen to have greater within-object set shape
differences than the restricted-experience object set (see Materials and Methods), it is unsafe to compare the absolute fraction of
neurons showing shape selectivity among the two object sets.
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trained position (relative to the non-
trained position), it does not give a clear
sense of the absolute magnitude of that se-
lectivity difference. To analyze this, we
computed the difference between the re-
sponse to the best object (the object that
evoked the largest response) and the re-
sponse to the worst object (the object that
evoked the smallest response). To avoid
any bias in this measurement, each neu-
ron’s best and worst objects were deter-
mined based on one-half of the data ob-
tained from that neuron (pooled over
position), and its best-worst response dif-
ference was computed using the other half
of the data (even/odd split of the total
number of presentations of each object;
this measure is unbiased in that it will be
zero for nonselective neurons). We found
(Fig. 5b) that as we focused on neurons
that were more and more selective among
the restricted-experience objects, regard-
less of position (by ANOVA), the mean
best-worst difference for these difficult-to-
discriminate objects increased to �5
spikes/s at the trained position but was
near zero for the nontrained position
(consistent with our main finding) (Figs.
3a, 4a). That is, although the neuronal
sampling and the analysis were completely
unbiased with respect to the two positions,
clear selectivity was found at the well expe-
rienced position and little selectivity was
found at the eccentricity-matched posi-
tion. [Interestingly, these same neurons
showed only mild selectivity at the center
of gaze (Fig. 5b).] Closer examination of
the time course of selectivity revealed that
this difference in selectivity at the two po-
sitions did not take time to develop, but was present right at the
time that IT neurons start to respond (�100 ms latency) (Fig. 6)
(see also Discussion).

Could the observed difference in selectivity among the
restricted-experience objects at the two positions be the result of
a coincidental neuronal sampling bias (e.g., if there were, by
chance, more neurons with receptive fields centered at the
trained position) or a bias in spatial attention, developed during
the training that persisted (for many weeks) during the passive-
viewing fixation task? We designed our experiment to minimize
the chance of either possibility by (1) using unbiased sampling of
neurons (only the bias test objects were presented while we ad-
vanced the electrode looking for isolated cells), and (2) perform-
ing all neuronal testing while the animal was simply required to
fixate as objects and positions were randomly tested at a rapid
rate (5/s) (see Materials and Methods). In addition to these above
precautions, we also designed our experiment so that it contained
a sensitive assay to test for these possibilities. Specifically, all neu-
ronal data were collected along with randomly interleaved bias
test objects (fully interleaved within each behavioral trial) (see
Materials and Methods). By design, these objects were selected
before the experiment began to be easier to discriminate than the
restricted-experience objects (Fig. 1), so that IT neurons were
likely to be selective within the object set and thus provide a

sensitive assay for any bias. We also ensured that these bias test
objects were experienced equally at the two key positions (see
Materials and Methods), to guard against the possibility of any
experience-induced selectivity bias among these objects (the
main question of our study). This experimental design ensures
that if any bias in RF sampling or spatial attention is present (even
though our design makes that unlikely), then that bias will also
appear in the responses to the bias test objects. In the analyses that
follow, we show that no such bias was found among the bias test
objects and, thus, neither of the above possibilities can explain the
observed selectivity difference among the restricted-experience
objects at the two positions.

First, we examined the responsivity at each position (mean
response to all four objects in each set), and we found that the bias
test objects drove the IT neurons approximately equally well at
both of the key experimental positions (�2°, �2°) (Fig. 5a). Also,
we found a tendency for objects presented at the center of the
fovea (0°) to produce a slightly stronger response, as expected
from previous IT work (Fig. 5a) (Op de Beeck and Vogels, 2000;
DiCarlo and Maunsell, 2003). Both of these results are inconsis-
tent with a RF sampling bias or an attentional bias toward (or
away from) the trained retinal position. Second, we repeated the
best-worst analysis (above) for the bias test objects, and we found
virtually identical selectivity at both the trained and nontrained

Figure 4. a– d, IT selectivity and behavioral performance within object sets after training. a, Fraction of IT neurons with
responses that were selective among the restricted-experience objects when those objects were tested at the trained retinal
position (black bars) and at the nontrained, equally eccentric position (white bars). Data from both monkeys have been combined
(Fig. 2). As in Figure 2, selectivity was determined by ANOVA, and the x-axis shows a range of significance levels ( p values) used
for deeming a neuron to be selective. *p � 0.05, � 2 test; significant difference at the trained and nontrained positions. Portions
of the bars overlaid in gray indicate the fraction of neurons that were selective at both the trained and nontrained positions. b, Left,
Performance of the population of selective IT neurons ( p � 0.1, ANOVA) assessed by linear classification (see Materials and
Methods), shown separately for each monkey. Chance is 25% (four possible objects). **p�0.01, test of independent proportions;
significant performance difference at the trained and nontrained positions. Right, behavioral performance for one monkey at
discriminating among the restricted-experience objects at the trained (black) and nontrained (white) retinal positions (with
interleaved low-contrast trials from the bias test object set) (see Materials and Methods). Whereas absolute behavioral perfor-
mance (b, d, right) is decreased from levels achieved during training because several trial types are interleaved, a strong asym-
metry is observed between the trained and nontrained positions for the restricted-experience objects, but not the interleaved bias
test objects. **p � 0.01, test of independent proportions; significant difference. c, d, Same conventions as in a, b for the bias test
objects, which show no asymmetry between the trained and untrained retinal positions [please note that no direct comparison is
implied between the absolute selectivity/performance levels for the restricted-experience (a, b) and bias test objects (c, d)].
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positions (Fig. 5b). Third, again using ANOVA as a summary
measure of selectivity, we found that the difference in the number
of selective neurons at the two retinal positions found for the
restricted-experience object set was not observed for the bias test
object set ( p � 0.441, � 2 test) (Fig. 4c). Consistent with this
observation, a significant interaction was found between retinal
position (trained vs nontrained) and object set (restricted-
experience versus bias test; p � 0.001, multi-way � 2 analysis). In
summary, all three of these analyses show that our main observa-
tion, a lack of position generalization of IT selectivity among the

restricted-experience objects, cannot be explained by visual field
biases in the recorded neuronal population (RF sampling) or by a
bias in spatial attention (see also Discussion).

Having established above that single-unit IT selectivity does
not automatically transfer equally across the visual field, we
turned to population readout measures that leverage many neu-
rons in a population and thus provide an even more sensitive
assay of selectivity across position (as well as translating single-
unit measures into units of “performance”). To test whether
more information about the restricted-experience objects was
available for readout in the IT population at the trained position,
we constructed linear discriminant classifiers (Duda et al., 2001)
to predict object identity on the basis of population neuronal
responses (n � 21 neurons) (see Materials and Methods). In both
animals, the classifiers were significantly more accurate in pre-
dicting object identity at the trained position compared with the
nontrained position (monkey M, p � 0.0001; monkey P, p �
0.0001; one-tailed two-sample test of independent proportions)
(Fig. 4b). This result is not surprising given the single-unit selec-
tivity measures (Figs. 2, 3a, 4a); it confirms the availability of
more discriminative information about the restricted-experience
objects at the position in which they were trained, relative to a
matched position in which they were not. Also consistent with
the single-unit measures is that the same linear discriminant
analysis showed no significant performance difference at the two
positions for the bias test objects (monkey M, p � 0.284; monkey
P, p � 0.384) (Fig. 4d), again ruling out a bias in spatial attention
or neuronal sampling.

It is known that many IT neurons show changes in responsiv-
ity across changes in object position but often continue to show
the same pattern of selectivity (rank order) among a set of objects
(i.e., their selectivity has position tolerance) (Tovée et al., 1994;
Ito et al., 1995; Logothetis et al., 1995; DiCarlo and Maunsell,
2003). Our results above suggest that position tolerance depends
at least somewhat on visual experience because, after restricted
training at one position, the magnitude of selectivity was larger at
that position than the equally eccentric, nontrained position.
However, given that some weak selectivity was still observed at
the nontrained position (Fig. 2), we asked whether the rank-
order pattern of selectivity at the two positions was similar.
Among the neurons that showed strong selectivity among the

Figure 5. Mean responsivity and selectivity (best-worst) of the IT population. a, Left, Mean
response to all four objects in the restricted-experience object set at the two main experimental
positions and at the center of gaze (Fig. 3, mapping of these positions to absolute visual field
position). Results are shown for all neurons and for a subset of highly selective neurons (selec-
tive among the restricted-experience objects at p � 0.05 at either position; ANOVA). Right,
Same analysis applied to the same neurons, but now for the responses to the bias test objects
presented at the same three positions (see Materials and Methods). b, Left, Selectivity among
the restricted-experience objects (response to best object minus response to worst object) at
each position [red shows trained position; blue shows equally eccentric, nontrained position
(Fig. 3)]. The plot shows results as a function of the ANOVA p value used for inclusion as selective
among the restricted-experience objects (neurons that reach this level of selectivity at either
position are included). This plot is completely unbiased with respect to the two main experi-
mental positions, and the magnitude of selectivity (best-worst) is also unbiased (see Results).
Dashed line shows the same best-worst analysis applied to the same neurons, but now using
the responses of the neurons to the same objects presented at the center of gaze (gray is SEM).
Right, Selectivity using the same best-worst analysis applied to the same neurons, but now
using the responses of the neurons to the bias test objects at the two key positions and center of
gaze (see Materials and Methods). This plot shows that selectivity among the bias test objects is
very similar in the two key retinal positions, but direct comparison of the magnitude of selec-
tivity with the restricted-experience selectivity (left plot) is unsafe. Error bars indicate SEM.

Figure 6. Time course of selectivity for the restricted-experience objects at the two key
experimental positions. The responses of all neurons showing strong selectivity among the
restricted-experience objects at either position are included ( p � 0.05, n � 11). The x-axis is
time since stimulus onset; the y-axis is mean selectivity (over all of the neurons) in which
best-worst selectivity was computed in an unbiased manner as described in Figure 5b and
Results, but here using a 50 ms sliding window (10 ms steps). Quantitative assessment of the
separation of the two curves is captured in Figure 5b.

Cox and DiCarlo • Experience and Position-Tolerant Representation J. Neurosci., October 1, 2008 • 28(40):10045–10055 • 10051



restricted-experience objects (ANOVA p � 0.05, regardless of
position), we found that the mean rank-order correlation (Spear-
man) was only 0.10 and not significantly greater than zero ( p �
0.42 by t test; monkey M, 0.12; monkey P, 0.08), suggesting little
object preference similarity across position (for comparison, the
mean Spearman correlation over position among the bias test
objects was 0.64, p � 10�16). We caution that the low values
among the restricted-experience objects should not be inter-
preted as neurons with very different patterns of selectivity at the
two positions but are driven primarily by the fact than many
neurons were not selective at the nontrained position (Figs. 2– 4),
which pushes the correlation toward zero. In a similar vein, we
found that linear classifiers constructed using only neuronal re-
sponses to the restricted-experience objects at the trained posi-
tion showed roughly chance performance among those objects
presented at the nontrained position (monkey M, 24.4%; mon-
key P, 27.5%; chance is 25%) (compare Fig. 4b). For comparison,
the same analysis among the bias test objects yielded good gener-
alization performance across position: essentially the same per-
formance at the nontrained position as at the trained position
(monkey M, 35% correct; monkey P, 63% correct) (compare Fig.
4d), consistent with a previous study (Hung et al., 2005).

Finally, we wondered whether there were behavioral corre-
lates of the difference in IT neuronal selectivity across position
among the restricted-experience objects. In our main experimen-
tal design, the animal subjects were never required to discrimi-
nate among these objects at retinal positions other than the
trained position [although they did experience them a great deal
at both key experimental positions during neuronal testing (pas-
sive fixation task) (Fig. 1b) (see Materials and Methods)]. How-
ever, after recording was complete, we conducted further exper-
iments to explore this behavioral issue. In particular, monkey M
performed a modified version of the object identification task in
which the restricted-experience objects were presented at both
the trained and nontrained positions (randomly interleaved,
trial-by-trial). To ensure that any observed performance differ-
ence could not be attributed to a bias in spatial attention (e.g.,
toward the trained position), we also randomly interleaved trials
with objects from the bias test set presented at reduced contrast
(to increase their difficulty and avoid ceiling effects). We found
that behavioral performance with the restricted-experience ob-
jects was significantly better at the trained position compared
with the nontrained position ( p � 0.0017, one-tailed two-sample
test of independent proportions) (Fig. 3c), whereas performance
with the bias test object set was not significantly different at the
two positions ( p � 0.482, one-tailed two-sample test of indepen-
dent proportions) (Fig. 3f). Consistent with the neuronal data,
this behavioral pattern shows that, although the animal has the
capability to perform position– general object discrimination for
at least some object classes (bias test objects), it had a substantial
failure to position-generalize its recognition of the restricted-
experience objects (but see Discussion). Furthermore, like the
neuronal data above, the behavioral asymmetry across position
with the restricted-experience objects cannot simply be explained
by a shift in spatial attention (because it was not seen among the
trial-by-trial interleaved bias test objects).

Discussion
The adult IT neuronal representation has selectivity for visual
objects that tolerates changes in object position (Tovée et al.,
1994; Ito et al., 1995; Logothetis et al., 1995; Hung et al., 2005), a
property known as position tolerance (or relative invariance).
This property likely underlies position-tolerant object recogni-

tion (Biederman and Cooper, 1991), and it is now at the forefront
of the object vision community (Kravitz et al., 2008). The results
presented here argue that position tolerance is modified by visual
experience. Specifically, by precisely controlling the retinal posi-
tion of objects, we show that visual experience results in IT neu-
ronal selectivity that is strongly biased toward the experienced
position. This reshaped selectivity was not automatically propa-
gated just 4° from the well experienced position. This suggests
that the computational machinery of the ventral visual stream is
not constructed in a manner that automatically produces posi-
tion tolerance in IT, even across relatively small changes in retinal
position. Instead, the creation and/or maintenance of IT position
tolerance might require experience (although not necessarily
with the exact same objects) (see below).

How large is the experience-induced IT effect reported here?
Although we found that only a minority of IT neurons were
selective among the restricted-experience objects, this is not sur-
prising in the context of existing IT plasticity studies (Logothetis
and Pauls, 1995; Kobatake et al., 1998; Baker et al., 2002; Sigala
and Logothetis, 2002; Freedman et al., 2006; Mruczek and Shei-
nberg, 2007) and the prevailing idea that IT represents a world of
objects besides those tested in the laboratory. Although the effect
size might be considered modest in terms of absolute firing rates
(�5 spikes/s difference in selectivity at the two positions) (Fig.
5b), this is comparable with that reported in the best controlled
study of experience-induced shape selectivity changes in IT
(Baker et al., 2002), and with the effect of spatial attention in the
ventral stream (�25% of visual stimulus modulation) (Maunsell
and Cook, 2002). Although experience can produce functional
magnetic resonance imaging (fMRI)-detectable changes in the
ventral stream (Gauthier et al., 1999; Grill-Spector et al., 2000;
Kourtzi et al., 2005; Op de Beeck et al., 2006) [see Op de Beeck et
al. (2008) for discussion of the potentially complex relationship
to single-unit studies], to our knowledge, no fMRI study has yet
examined the experience manipulation used here. In sum, al-
though we do not yet know whether the experience-driven
change in IT position tolerance reported here explains the asso-
ciated perceptual effects (see below), it is nontrivial by a number
of measures.

Because we could not record from the same neurons before
and after training, our data cannot determine how individual IT
neuronal response profiles changed over the course of training to
result in the position-specific selectivity we observed. For in-
stance, selectivity at the trained position might be built entirely de
novo in cells exhibiting little initial selectivity for these objects;
alternatively, preexisting selectivity for related objects might be
gradually shaped and amplified. It is also logically possible (al-
though unlikely) that shape selectivity was initially present at
both positions before training but was somehow weakened at the
untrained position.

Consistent with the observed failure to generalize across posi-
tion within the IT neuronal population, we found a correspond-
ing failure to generalize behaviorally (Fig. 4b). Because the bias
test objects showed that monkeys are able to perform position-
tolerant object identification (Fig. 4d) (see also DiCarlo and
Maunsell, 2003), we speculate that this behavioral failure to
position-generalize (Fig. 4b) is caused by the monkey’s reliance
on a non-position-tolerant visual neuronal representation (e.g.,
IT) (Fig. 4a,b). However, we cannot rule out the possibility that a
nonsampled IT population (or another visual area representa-
tion) is sufficient to support position generalization, but that
the monkey may have just failed to generalize the “concept” of
the task.
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Importantly, we used another set of objects (bias test objects)
to show that training with the restricted-experience objects did
not induce a persistent shift in spatial attention (see Results).
Could other, more complex, attention-based accounts explain
our results? Our data (Fig. 6) show that even during rapid, fully
interleaved testing, the difference in selectivity observed at the
two positions is present when IT neurons first respond (�100
ms) (Baylis and Rolls, 1987; Vogels and Orban, 1994; DiCarlo
and Maunsell, 2003, 2005). This effectively immediate difference
argues against rapidly shifting spatial attention-based accounts of
our results, which would require some other brain area to “pre-
recognize” the restricted-experience objects (effectively perform-
ing some of the computations undertaken by IT, but faster than
IT), initiate an obligatory shift of covert attention to the trained
position, and immediately shift attention back to a neutral state,
all within 200 ms (and in the context of a fixation task, in which
such attention shifts would serve no behavioral purpose). An-
other possibility is that our training procedure induced a persis-
tent, “bottom-up” attentional bias that is both object-specific
and position-specific. However, such attention has, to our
knowledge, not been previously reported, and is functionally
equivalent to saying that the position tolerance of the ventral
stream has been altered (i.e., our main claim). In sum, our data
show that the position profile of IT object selectivity (i.e., position
tolerance) is modified by visual experience and that modification
persists even during a simple fixation task and across long periods
of time (months of recording). Thus, we argue that the most
parsimonious mechanistic explanation of all our results is a
change in synaptic connectivity or weighting along the ventral
stream (see below).

Our results are consistent with human psychophysical exper-
iments in which the learning of complex object discrimination at
one retinal position does not fully transfer to equally eccentric,
nontrained positions (Nazir and O’Regan, 1990; Dill and Fahle,
1997; Dill and Edelman, 2001). Similar to those studies, the effect
described here was found within an object set that was initially
challenging to discriminate so that it likely required the learning
of new feature conjunctions (Baker et al., 2002). Thus, our work
does not reveal whether experience-induced changes in neuronal
position tolerance would be seen after position-restricted train-
ing with simpler, easy-to-discriminate objects sets which, by def-
inition, can be discriminated using features with which subjects
have a great deal of previous experience. Also, given that we pro-
vided significantly more experience (�20,000 exposures of each
object) than was provided in the psychophysical studies, it re-
mains to be seen whether changes in IT neuronal tolerance also
occur with less experience (see below). Finally, although psycho-
physical studies have suggested that pose tolerance is influenced
by visual experience (Logothetis and Pauls, 1995; Logothetis et
al., 1995; Wallis and Bülthoff, 2001), it remains to be seen
whether our finding extends into other types of tolerance [see
Logothetis and Pauls (1995) for hints that it might].

Our results add to a growing body of evidence that adult visual
representations remain at least somewhat malleable by experi-
ence (Nazir and O’Regan, 1990; Kobatake et al., 1998; Gauthier et
al., 1999; Grill-Spector et al., 2000; Dill and Edelman, 2001; Baker
et al., 2002; Fahle and Poggio, 2002; Sigala et al., 2002; Kourtzi et
al., 2005; Dan and Poo, 2006; Freedman et al., 2006; Op de Beeck
et al., 2006; Mruczek and Sheinberg, 2007) and show that this
malleability extends to the core tolerance (invariance) properties
of the ventral visual pathway (Kourtzi and DiCarlo, 2006; Di-
Carlo and Cox, 2007). The difference in selectivity was just over
4° within the fovea, which, given the prevailing notion that IT

neurons have very large receptive fields, might argue that changes
must have occurred at earlier visual stages. However, IT neurons
can have receptive field sizes of only 1–2° (Op de Beeck and
Vogels, 2000; DiCarlo and Maunsell, 2003). Moreover, our study
design is closely related to studies of “perceptual learning,” which
have shown little or no changes in early visual areas V1 and V2
(Ghose et al., 2002; but see Crist et al., 2001; Schoups et al., 2001)
but moderate changes in intermediate visual area V4 (Yang and
Maunsell, 2004), which provides input to IT. In sum, the existing
data could reflect increasing potential for plasticity in higher vi-
sual areas or the expression of accumulated changes across a se-
ries of similarly plastic areas.

The plasticity observed here could reflect ongoing “fine-
tuning” of visual representations, rather than being fundamental
to the development of position-tolerant object representation.
Thus, going forward, we must try to understand whether similar,
perhaps even stronger effects are seen in developing animals.
Similarly, the visual experience provided here is unlike that nat-
urally encountered in that we briefly exposed each object at just
one retinal position. During natural experience, objects tend to
remain present for relatively long time intervals (seconds or
more), whereas object motion and self-motion (especially sac-
cadic eye movements) provide experience with the same object at
different retinal positions over much shorter time intervals (tens
of milliseconds). Interestingly, recent studies have found that
manipulation of this natural temporal contiguity of object expe-
rience predictably alters human position (Cox et al., 2005), hu-
man pose tolerance (Wallis and Bülthoff, 2001), and monkey IT
position tolerance (Li and DiCarlo, 2008). Thus, we speculate
that neuronal tolerance all along the ventral stream is built by
natural spatiotemporal experience with the visual world (espe-
cially objects). Even such learned tolerance will generalize some-
what to similar objects and nearby retinal positions (especially
when that learning occurs at early visual levels in which encoded
”features“ are shared by many objects) such that experience with
all objects at all positions is not required (Ullman and Soloviev,
1999; Serre et al., 2007). Indeed, it would be a mistake to take our
results to imply that position-tolerant recognition of ”novel“ ob-
jects cannot be accomplished without visual experience of those
specific objects at all positions. On the contrary, adult human
discrimination of everyday objects is remarkably position-
tolerant, even if those exact objects have never been previously
encountered (e.g., a new phone vs a new laptop computer) (Bied-
erman and Cooper, 1991).

In summary, the available data paint the following picture of
position tolerance (Kravitz et al., 2008): in adult monkeys, neu-
rons at the top of the ventral visual stream (IT) are selective
among visual objects and maintain that selectivity across changes
in retinal position within the neuron’s receptive field (Tovée et
al., 1994; Ito et al., 1995; Logothetis et al., 1995; DiCarlo and
Maunsell, 2003). Those fields vary dramatically in size (Op de
Beeck and Vogels, 2000; DiCarlo and Maunsell, 2003; Zoccolan et
al., 2007) and are not fully position-invariant (roughly consistent
with visual priming studies) (Biederman and Bar, 1998; Bar and
Biederman, 1999). However, the rapidly evoked population re-
sponse of only hundreds of such neurons can easily support
position-tolerant categorization and identification of such ob-
jects (Hung et al., 2005), and the key property is that rank-order
object selectivity is reasonably maintained in each neuron (e.g.,
DiCarlo and Cox, 2007). Studies using rapid visual categorization
(Potter, 1976; Thorpe et al., 1996), single-neuron recording
(Quiroga et al., 2005), and fMRI (Ishai et al., 1999; Grill-Spector
et al., 2001) suggest a similarly powerful, rapidly evoked popula-
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tion representation in human occipitotemporal cortex (albeit
very difficult to compare directly with the monkey). Our results
here do not question the existence of that highly position-tolerant
population representation but, rather, bear on the central ques-
tion of how it was constructed by the visual system in the first
place. Models of the computational mechanisms underlying
position-tolerant representation vary widely in their stance on
this issue: some do not require experience (Olshausen et al.,
1993), others depend on visual experience (Foldiak, 1991; Wallis
and Baddeley, 1997; Wiskott and Sejnowski, 2002), and others
are agnostic but open to the idea (Riesenhuber and Poggio, 1999;
Ullman and Bart, 2004; Serre et al., 2007). Distinguishing among
these alternatives is central not only because it would tell us some-
thing deep about the way the brain works, but because a more
complete understanding of these learning principles might allow
us to put them to use in building powerful artificial visual
systems.
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