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Abstract
The serpins are the largest superfamily of protease inhibitors. They are found in almost 

all branches of life including viruses, prokaryotes and eukaryotes. They inhibit their 
target protease by a unique mechanism that involves a large conformational transition 
and the translocation of the enzyme from the upper to the lower pole of the protein. This 
complex mechanism, and the involvement of serpins in important biological regulatory 
processes, makes them prone to mutation‑related diseases. For example the polymeriza-
tion of mutant a1‑antitrypsin leads to the accumulation of ordered polymers within the 
endoplasmic reticulum of hepatocytes in association with cirrhosis. An identical process 
in the neuron specific serpin, neuroserpin, results in the accumulation of polymers in 
neurons and the dementia FENIB. In both cases there is a clear correlation between 
the molecular instability, the rate of polymer formation and the severity of disease. A 
similar process underlies the hepatic retention and plasma deficiency of antithrombin, 
C1 inhibitor, a1‑antichymotrypsin and heparin co-factor II. The common mechanism of 
polymerization has allowed us to group these conditions together as a novel class of 
disease, the serpinopathies.

Serpins (or serine protease inhibitors) are the largest family of protease inhibitors. 
They have been found in all major branches of life including viruses, prokaryotes and 
eukaryotes.1‑3 Despite their name there is increasing evidence that serpins can also inhibit 
other classes of proteases as demonstrated by the viral serpin CrmA and recently by a 
plant serpin, serpin1.4,5 They can even play a non-inhibitory role in events as diverse as 
blood pressure regulation (angiotensinogen), chromatin condensation (MENT), tumor  
progression (maspin), protein folding (hsp47) and hormone transport (cortisol and 
thyroxine binding globulin).6

One of the most important roles of serpins is the regulation of enzymes involved in 
proteolytic cascades. Among these serpins are a1‑antitrypsin, a1‑antichymotrypsin, C1 
inhibitor, antithrombin and plasminogen activator inhibitor‑1, which play an important 
role in the control of proteases involved in the inflammatory, complement, coagulation 
and fibrinolytic pathways, respectively.1,3 The serpin superfamily is characterised by 
more than 30% homology with the archetypal serpin a1‑antitrypsin and conservation of 
tertiary structure.7,8 Serpins adopt a metastable conformation composed in most cases of 9 
a‑helices, three b‑sheet (A to C) and an exposed mobile reactive centre loop (RCL). This 
flexible RCL typically contains 20 residues that act as a pseudo substrate for the target 
protease (Fig. 1A).9‑15 After formation of a Michaelis complex16,17 the enzyme cleaves the 
P1‑P1' bond of the serpin, releasing the P1’ residue and forming an ester bond between 
the protease and the serpin.18,19 This is then followed by a dramatic conformational transi-
tion from a stressed to relaxed conformation with the enzyme being pulled from the upper 
to the lower pole of the serpin and the insertion of the reactive loop as an extra strand in 
b‑sheet A.20‑25 As a consequence of this conformational change the thermal stability of the 
serpin is greatly enhanced. Whereas a typical serpin in its native state exhibits a midpoint 
of thermal denaturation of around 50–60˚C, a cleaved serpin with its RCL fully incor-
porated into b‑sheet A denatures at temperatures >120˚C.9,26,27 Another consequence is 
the inactivation of the enzyme, stabilised at the acyl‑intermediate and unable to proceed 
further to deacylation of the complex.24,28 This serpin‑protease complex then binds to 
members of the lipoprotein receptor family and is cleared from the circulation.29‑31

Despite the evolutionary advantage conferred upon serpins by the remarkable mobility 
of the native state, their complexity is also their weak point.19,32 Mutations affecting the 
serpins can lead to a variety of diseases, resulting from either a gain or loss of function.6,19 
For example mutations can cause aberrant conformational transitions that result in the 
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retention of the serpin within the cell of synthesis. This will lead to 
either protein overload and death of the cell in which the serpin is 
synthesised, or disease as a consequence of the resulting plasma defi-
ciency. Such a mechanism underlies diseases as diverse as cirrhosis, 
thrombosis, angio‑oedema, emphysema and dementia. We review 
here the common mechanism underlying these diseases that we 
have grouped together as the serpinopathies.33‑35 The aggregation 
and accumulation of conformationally destabilized proteins is an 
important feature of many neurodegenerative diseases, including 
Alzheimer’s and Parkinson’s disease and the spongiform encephalopa-
thies. Indeed we have used the serpinopathies as a paradigm for these 
other ‘conformational diseases’.36

Polymerization of a1‑Antitrypsin in the Pathogenesis 
of Cirrhosis and Emphysema

a1‑antitrypsin is an acute phase glycoprotein that is synthesised 
by, and secreted from, the liver. It inhibits neutrophil elastase and 
therefore plays an important role in the control of the inflamma-
tory response. More than 100 allelic variants have been described 
with the most clinically relevant being the S (Glu264Val) and Z 
(Glu342Lys) alleles.37‑40 The S allele is found in up to 28% of 
southern Europeans39 and reduces plasma levels of a1‑antitrypsin 
to 60% of the normal M protein. The Z allele is present in 4% 
of northern Europeans39 and reduces the plasma level to 10–15% 
of normal. The decrease in plasma level is not associated with any 
clinical phenotype in the S homozygote but it has dramatic effects 
in those who are homozygous for the Z allele. The Z mutation 
causes the retention of a1‑antitrypsin in hepatocytes as diastase resis-
tant, periodic acid‑Schiff (PAS) positive inclusions that cause both 
neonatal and adult liver disease (Fig. 2).41‑44

Following synthesis, misfolded monomeric Z a1‑antitrypsin is 
degraded by the proteosome but 10–15% folds normally and traffics 
through the secretory pathway to be released into the circulation. 
Disease results from the proportion of Z a1‑antitrypsin that folds to 
form polymers. These accumulate within the endoplasmic reticulum 
(ER) of hepatocytes to form inclusions and hence cause disease.44,45 
Biochemical, biophysical and crystallographic studies have elucidated 
the molecular basis of the polymerization of Z a1‑antitrypsin. The 
mutation associated with the Z allele is located at the head of strand 
5 of b‑sheet A and the base of the mobile reactive loop (Fig. 1B). This 
mutation causes a conformational transition and the formation of an 
unstable intermediate that we have called M*. M* is characterised by 
partial insertion of the RCL and opening of b‑sheet A. The patent 
b‑sheet A can then accept the loop of another molecule to form a 
loop‑sheet dimer, which extends to form longer chains of loop‑sheet 
polymers.44‑49 Polymers activate the ER overload response but 
their ordered nature allows them to escape the surveillance of the 
unfolded protein response. Indeed this pathway is only activated in 
the presence of a secondary insult.50,51 More recently it has become 
apparent that polymers can be handled by autophagic pathways 
within hepatocytes.52‑55

Further evidence of the importance of a1‑antitrypsin polymers 
in the pathogenesis of liver disease is provided by two other mutants 
of a1‑antitrypsin that are similarly associated with plasma deficiency 
and hepatic inclusions: a1‑antitrypsin Siiyama (Ser53Phe)56 and 
Mmalton (DPhe52).57 The Siiyama variant is the commonest cause 
of a1‑antitrypsin deficiency in Japan whilst the Mmalton variant is 
the commonest cause of a1‑antitrypsin deficiency in the isolated 
island of Sardinia. Both of these mutants disrupt a hydrogen bond 

Figure 1. Inhibition of neutrophil elastase by a1‑antitrypsin and the structural 
basis of polymerization. (A) After docking (left) the neutrophil elastase (grey) 
is inactivated by movement from the upper to the lower pole of the protein 
(right). This is associated with the insertion of the RCL (red) as an extra strand 
into b‑sheet A (green). (B) The structure of a1‑antitrypsin is centred on b‑sheet 
A (green) and the mobile reactive centre loop (red). Polymer formation results 
from the Z variant of a1‑antitrypsin (Glu342Lys at P17; indicated by arrow) 
or mutations in the shutter domain (blue circle) that open b‑sheet A to favour 
partial loop insertion and the formation of an unstable intermediate (M*). 
The patent b‑sheet A then accepts the loop of another molecule to form a 
dimer (D), which then extends into polymers (P). The individual molecules of 
a1‑antitrypsin within the polymer, although identical, are coloured red, yellow 
and blue for clarity. Figure reproduced with permission from Lomas et al.97

network based on His334 that bridges strands 3 and 5 of b‑sheet A 
(the shutter domain; Figs. 1A and 2),58 causing it to open and allow 
the formation of folding intermediates59 and loop‑sheet polymers 
in vivo.60,61 The mild S (Glu264Val) and I (Arg39Cys) variants 
of a1‑antitrypsin also lie in the shutter domain and can also form 
polymers in vivo. However they do so at a slower rate and this 
polymer formation47 is associated with a mild plasma deficiency 
and no clinical phenotype.62,63 However, if a slowly polymerizing 
S (Glu264Val) or I (Arg39Cys) variant is inherited with a fast 
polymerizing Z variant then they will form heteropolymers that 
accumulate within hepatocytes and lead to cirrhosis.63‑65 Thus there 
is a striking genotype‑phenotype correlation between the rate of 
polymerization, the retention of a1‑antitrypsin within the liver, and 
the severity of the plasma deficiency.

The reduction in the circulating level of a1‑antitrypsin predisposes 
the Z homozygote to early onset, panlobular, basal emphysema.66‑68 
This predisposition is particularly apparent in Z a1‑antitrypsin 
homozygotes who smoke as the combination of low levels of 
a1‑antitrypsin within the lung and the inflammation caused by 
smoking have a dramatic effect on lung function.69,70 The intra-
pulmonary deficiency of a1‑antitrypsin is exacerbated by the effect 
of the point mutation which reduces the association kinetics with 
neutrophil elastase by 5-fold and thus the ability of the protein 
to protect against proteolytic damage. Z a1‑antitrypsin enters the 
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(Pro54Thr, Asn158Asp, Phe229Leu) 
and a1-antichymotrypsin (Leu55Pro, 
Pro229Ala). These mutations destabilise the 
serpin architecture to allow the formation 
of inactive reactive loop‑b‑sheet polymers 
that are also retained within hepatocytes. 
The associated plasma deficiency results 
in uncontrolled activation of proteolytic 
cascades and angio‑oedema, thrombosis 
and chronic obstructive pulmonary disease 
respectively (reviewed in refs. 6 and 33–
35). More recently a mutation in heparin 
co-factor II (Glu428Lys) has been associ-
ated with plasma deficiency but as yet this 
has not been shown to cause disease.77 The 
mutation is of particular interest as it is the 
same as the Z allele that causes polymer-
ization and deficiency of a1‑antitrypsin. 
We have shown that this same muta-
tion also causes temperature dependent 
polymerization and inactivation of mutants 
of the Drosophila serpin Necrotic.78

Neuroserpin Polymers  
and the Dementia Familial 
Encephalopathy with Neuroserpin 
Inclusion Bodies (FENIB)

Perhaps the most striking disease 
associated with serpin polymerization is 
the dementia ‘familial encephalopathy with 
neuroserpin inclusion bodies’ or FENIB. 
This is characterised by the accumulation 
of mutant neuroserpin as PAS positive 

diastase‑resistant inclusions or Collin’s bodies within the deep layers 
of the cerebral cortex (Fig. 3).79‑81 These inclusions, like those 
associated with Z a1‑antitrypsin within hepatocytes, are formed of 
tangles of ordered polymers within the ER. Kindreds with FENIB 
present with presenile dementia and cognitive deficits unlike those 
of Alzheimer’s or Huntington Diseases.82

The first mutation of neuroserpin that causes FENIB was 
identified in a large Irish‑American family and was termed Syracuse 
to recognise the origin of the pedigree. The Syracuse mutation 
(Ser49Pro) is in the shutter domain at an identical location to a 
previously described mutation in a1‑antitrypsin that forms polymers 
in association with liver disease (the Siiyama mutation).80,83 An 
examination of the brain from affected individuals showed that the 
inclusions were composed solely of mutant neuroserpin that had 
formed chains of loop‑b‑sheet polymers.80,84 Three other mutations 
of neuroserpin have since been described, all of which are within the 
shutter domain: Portland (Ser52Arg), His338Arg and Gly392Glu.81 
There is a direct association between the severity of the mutation 
(as predicted by molecular modelling) and the number of inclusions 
and an inverse correlation with the age of onset of dementia. For 
example, the original family members with the Syracuse mutation 
showed small diffuse intraneuronal inclusions of neuroserpin and a 
late onset of dementia between 45 and 60 years old.79,80,82 A family 
with the more severe Portland mutation showed larger inclusions 
and an onset of dementia in their mid‑twenties. The family with the 
His338Arg mutation showed even more inclusions and an onset of 

lung by passive diffusion. It is also secreted by macrophages and 
bronchial epithelial cells. In both cases it contains the Z mutation 
and hence the propensity to form polymers. Indeed polymers of 
a1‑antitrypsin have been detected in bronchial lavage and tissue 
sections from Z a1‑antitrypsin homozygotes.71,72 These polymers are 
inactive as protease inhibitors and so further deplete the antiprotease 
screen within the lung. Pulmonary polymers of Z a1‑antitrypsin 
are chemotactic for neutrophils in vitro and following instilla-
tion into the lungs of mice.72‑74 Thus our understanding of the 
pathways of polymerization has provided new insights into the 
associated emphysema. However the importance of these polymers 
in driving the associated inflammation and emphysema remains to 
be clarified.75,76

Polymerization of Antithrombin, C1 Inhibitor,  
a1‑Antichymotrypsin and Heparin Co-Factor II  
Causes the Retention of Protein within Hepatocytes 
and Plasma Deficiency

The phenomenon of loop‑sheet polymerization is not restricted 
to a1‑antitrypsin and has now been reported in mutants of other 
members of the serpin superfamily to cause disease. Naturally 
occurring mutations have been described in the shutter and other 
domains of the plasma proteins C1‑inhibitor (Phe52Ser, Pro54Leu, 
Ala349Thr, Val366Met; Phe370Ser, Pro391Ser), antithrombin 

Figure 2. Z a1‑antitrypsin is retained within hepatocytes as intracellular inclusions. These inclusions are 
PAS‑positive and diastase resistant (A) and are associated with neonatal hepatitis and hepatocellular 
carcinoma. (B) Electron microscopy of a hepatocyte from the liver of a patient with Z a1‑antitrypsin 
deficiency shows the accumulation of a1‑antitrypsin within the rough ER (arrow). These inclusions are 
composed of chains of a1‑antitrypsin polymers shown here from the plasma of a Siiyama a1‑antitrypsin 
homozygote (C). More recently, polymers have been identified within PAS‑positive inclusions with 
a monoclonal anti‑polymer a1‑antitrypsin antibody. (D and E) Immunochemistry of the liver from an 
individual with Z a1‑antitrypsin deficiency, showing staining with an anti‑a1‑antitrypsin polyclonal 
antibody (D, arrow) and a monoclonal anti‑polymer a1‑antitrypsin antibody (E, arrow). It is these 
intracellular inclusions of polymers that are associated with neonatal hepatitis and hepatocellular 
carcinoma. Figure reproduced with permission from Lomas et al.97
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dementia in their mid teens whilst those with the most severe 
mutation, Gly392Glu, have very large inclusions and an onset 
of dementia leading to death before the age of 20 years.81

The direct correlation between the ‘polymerogenicity’ of 
the mutations and the onset of dementia strongly indicates 
that the intracellular accumulation of neuroserpin is by 
itself sufficient to cause neurodegeneration. The effect of 
polymerization on disease was corroborated by in vitro 
experiments showing a fast rate of polymerization for 
recombinant Ser49Pro neuroserpin, and an even faster rate 
for recombinant Ser52Arg neuroserpin which is associated 
with a more severe clinical phenotype.85‑87 A cell model 
using transient transfection in COS‑7 cells also showed the 
accumulation of mutant neuroserpin within the endoplasmic 
reticulum. The intracellular aggregates were composed of 
polymers similar to the loop‑sheet polymers isolated from 
the brains of individuals affected by FENIB.88 In keeping with the 
genotype‑phenotype correlation observed in patients, the more severe 
Portland mutant accumulated more rapidly and its rate of secretion 
was lower than for the less severe Syracuse mutant.88

Strategies to Prevent Polymerization  
and Ameliorate the Associated Disease

Understanding the pathway of polymerization has allowed the 
development of novel therapeutic strategies to block polymer 
formation and so ameliorate the associated disease. One strategy is 
to use peptides to block the aberrant linkage between the RCL of 
one molecule and b‑sheet A of another. Polymerization of Z a1‑anti-
trypsin can indeed be blocked in vitro by annealing 11‑13 amino 
acid RCL peptides to b‑sheet A.45 The poor specificity of these 
peptides led to the design of smaller peptides and indeed 4‑6‑mer 
peptides can efficiently and specifically block the polymerization of 
Z a1‑antitrypsin in vitro.89,90

Small sugar and alcohol molecules can reduce the rate of 
polymerization of both a1‑antitrypsin and neuroserpin in vitro, most 
probably by stabilising b‑sheet A.91 Chemical chaperones stabilise 
intermediates on the folding pathway92,93 but 4‑phenylbutyric acid, 
which increased the secretion of Z a1‑antitrypsin in a mouse model 
of disease,92 has proved to be ineffective in clinical trials in patients 
with a1‑antitrypsin deficiency.94

Peptides and chaperones are poor therapeutic agents in vivo 
and so another approach is to use small molecules to block 
polymerization. A hydrophobic pocket has been identified on the 
lateral surface of a1‑antitrypsin that is bounded by b‑strand 2A 
and helices D and E but which is distinct from the polymerization 
interface. The introduction of bulky residues into this pocket retards 
the polymerization of M a1‑antitrypsin and increases the secretion 
of Z a1‑antitrypsin from a Xenopus oocyte expression system.14,95,96 
Consequently this pocket offers a novel target for rational drug 
design. The identification of chemical compounds that bind to this 
cavity is currently underway.
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