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AbstrAct
The formation of amyloid fibrils is the hallmark of more than twenty human disorders of 

unrelated etiology. In all these cases, ordered fibrillar protein assemblies with a diameter 
of 7–10 nm are being observed. In spite of the great clinical important of amyloid- 
associated diseases, the molecular recognition and self-assembly processes that lead to 
the formation of the fibrils are not fully understood. One direction to decipher the mecha-
nism of amyloid formation is the use of short peptides fragments as model systems. Short 
peptide fragments, as short as pentapeptides, were shown to form typical amyloid assem-
blies in vitro that have ultrastructural, biophysical, and cytotoxic properties, as those of 
assemblies that are being formed by full length polypeptides. When we analyzed such 
short fragments, we identified the central role of aromatic moieties in the ability to aggre-
gate into ordered nano-fibrillar structures. This notion allowed us to discover additional 
very short amyloidogenic peptides as well as other aromatic peptide motifs, which 
can form various assemblies at the nano-scale (including nanotubes, nanospheres, and 
macroscopic hydrogels with nano-scale order). Other practical utilization of this concept, 
together with novel b breakage methods, is their use for the development of novel classes 
of amyloid formation inhibitors.

thE UltrAstrUctUrAl And PhysioloGicAl ProPErtiEs of Amyloid fibrils
The	formation	of	amyloid	protein	deposition	is	associated	with	major	human	diseases.	

A	 partial	 list	 includes	 Alzheimer’s	 disease,	 Parkinson’s	 disease,	 Type	 II	 diabetes,	 Prion	
disorders	and	many	more.1-3	There	are	more	than	twenty	human	disorders	that	are	associ-
ated	with	the	formation	of	amyloid	fibrils.	In	all	these	cases,	fibrillar	assemblies	that	have	
a	diameter	of	7–10	nm	are	being	observed	by	electron	microscopy	(EM)	or	atomic	force	
microscopy	(AFM).1-3	The	amyloid	fibrils	are	well-ordered	assemblies	that	have	a	typical	
4.6–4.8	Å	X-ray	fiber	diffraction	reflection	on	the	meridian.	This	reflection	is	consistent	
with	high	degree	of	order	along	the	long-axis	of	the	fibrils.	The	order	of	the	fibrils	is	also	
reflected	 in	 their	 typical	 green-gold	 birefringence	 when	 examined	 between	 cross-polar-
izers	upon	staining	with	 the	Congo	Red	dye.	The	process	of	 formation	of	well-ordered	
amyloid	fibrils	was	depicted	as	“one	dimensional	crystallization”	by	Peter	Lansbury	and	
coworkers.4

Amyloid	assemblies	also	 show	a	predominant	b	 sheet	 structure	as	 shown	by	circular	
dichroism	(CD)	and	Fourier-transformed	 infrared	 (FTIR)	 spectroscopy.	This	 secondary	
structure	 nicely	 correlates	 with	 the	 well-ordered	 X-ray	 fiber	 diffraction	 pattern	 as	 the	
stacking	of	b	strand	(as	observed	in	other	elongated	biological	assemblies	such	as	silk	and	
b	helix	protein)	is	consistent	with	those	parameters.	This	secondary	structure	is	also	a	key	
feature	that	is	being	used	to	inhibit	amyloid	formation	by	the	use	of	b	breaker	elements	
as	will	be	further	described	here.	A	very	interesting	point	is	that	fibrils	of	different	origins	
(e.g.,	from	the	brain	of	Alzheimer’s	disease	patients	and	the	pancreas	of	individuals	affected	
with	 Type	 II	 diabetes)	 show	 remarkable	 biophysical	 and	 ultrastructural	 properties	 as	
described	above.	However,	despite	the	remarkable	similarity,	no	simple	homology	between	
the	amyloid-forming	proteins	is	apparent.

do Amyloid fibrils rEPrEsEnt thE trUE PAtholoGicAl AssEmbliEs?
Although	fibrillar	amyloid	assemblies	are	identified	in	various	amyloid	diseases,	it	is	not	

clear	whether	these	are	the	genuine	pathological	species	in	those	disorders.	Recent	studies	
suggested	that	actually	early	soluble	oligomeric	assemblies,	rather	than	mature	fibrils,	may	
represent	the	pathological	agents	in	various	amyloid	disorders	(Fig.	1).5-18	The	most	studied	
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system	is	that	of	Alzheimer’s	disease	
b	 amyloid	 polypeptide	 in	 which	
small	 soluble	assemblies	appeared	
to	 be	 correlated	 with	 memory	
impairment	in	cellular	and	rodent	
models.5,15,17-18	 The	 in	 vivo	
detection	 of	 soluble	 oligomeric	
assemblies	 occurs	 well	 before	 the	
detection	of	amyloid	deposits	and	
it	 is	 correlated	 with	 impairment.	
Indeed	soluble	assemblies,	such	as	
the	 dodecameric	 Ab*56	 (Fig.	 1),	
were	 found	 to	 directly	 affect	 the	
process	of	 long-term	potentiation	
(LTP),	 a	 synaptic	 activity	 that	
is	 associated	 with	 memory	 and	
learning.17-18

The	 new	 appreciation	 for	 the	
role	of	early	oligomers	in	amyloid-	
associated	 disease	 pathology	
clearly	 suggests	 that	 very	 early	
events	 of	 amyloid	 formation	
should	be	inhibited.	Therefore	the	
early	 molecular	 recognition	 and	
self-assembly	 processes	 should	 be	
marked	 as	 the	 key	 target	 for	 the	
development	of	therapeutic	agents	that	could	control	the	formation	of	
the	pathological	species.	The	genuine	understanding	of	the	molecular	
interfaces	 that	mediate	 recognition	 and	 association	 is	 consequently	
critical	for	future	pharmacological	developments.

thE UsE of PEPtidE modEls to stUdy thE mEchAnism  
of Amyloid formAtion

While	 amyloid	 fibrils	 are	 being	 formed	 in	 most	 cases	 by	 poly-
peptides	 of	 30–40	 amino	 acids	 or	 even	 longer,	 other	 studies	 had	
demonstrated	that	peptide	fragments,	as	short	as	hexapeptides,	form	
amyloid	 fibrils	 of	 similar	 physical	 and	 ultrastructural	 properties	 as	
described	above.19-23	The	first	hexapeptide	system	that	was	studied	
is	 the	 NFGAIL	 amyloid-forming	 peptide	 fragment	 from	 the	 islet	
amyloid	polypeptide	(IAPP).19	This	peptide	was	found	to	assemble	
into	 typical	 amyloid	 fibrils	 that	 show	 the	 ultrastructure,	 molecular	
conformation,	 and	 cytotoxicity	 that	 are	 similar	 to	 that	 of	 amyloid	
deposits	that	are	formed	by	the	full-length	polypeptide.19

To	decipher	the	mechanism	of	amyloid	formation,	we	systemati-
cally	analyzed	short	peptide	fragments	to	pinpoint	residues	that	play	
a	role	in	the	molecular	recognition	and	self-assembly	process.	In	the	
first	 experimental	 system,	 a	 short	 amyloid	 forming	motif	 from	 the	
diabetes-related	IAPP	was	studied.24	Using	a	systematic	alanine	scan,	
we	identified	the	key	role	of	phenylalanine	in	the	NFGAILSS	motif	
(Fig.	2).24	It	was	revealed	that	any	amino-acid,	but	the	phenylalanine,	
could	be	substituted	to	an	alanine	and	a	significant	 level	of	 forma-
tion	of	amyloid	fibrils	would	still	be	detected	(Fig.	2).24	Only	when	
the	phenylalanine	was	change	to	an	alanine,	no	amyloid	formation	
could	be	observed	under	the	experimental	conditions.	When	vertical	
scan	of	this	peptide	fragment	was	made,	it	was	found	that	modifica-
tion	 of	 the	 phenylalanine	 into	 aliphatic	 amino	 acids	 significantly	
reduced	the	ability	of	the	peptide	to	form	typical	amyloid	fibrils.25	
On	the	other	hand	modification	of	the	phenylalanine	to	tryptophan	
(that	 is	 less	hydrophobic	 than	phenylalanine)	 allows	 the	 formation	

Figure 1. The molecular cascade that leads to the formation of amyloid fibrils. The formation of amyloid fibrils is a 
sequential process that proceeds from monomeric species into well-ordered amyloid fibrils. It is still unclear whether 
the formation of soluble oligomers such as the Ab*5617 and the annular amyloid pores,8 is an on-pathway or an 
off-pathway process.

Figure 2. Systematic study of amyloid formation. Alanine scan was first 
used to identify the phenylalanine as the most important residue in amyloid  
formation by this fragment. This was followed by vertical scan in which the 
role of aromatic as compared to aliphatic residues was revealed.



Self	Assembly	of	Aromatic	Peptides

34	 Prion	 2007;	Vol.	1	Issue	1

of	amyloid-like	structure	(Fig.	2).26	In	a	later	study	by	Dobson	and	
coworkers,	 in	 which	 the	 amyloidogenic	 propensity	 of	 all	 naturally	
occurring	 amino	 acids	 was	 compared,	 aromatic	 amino	 acids	 were	
determined	to	have	 the	highest	amyloid	 forming	propensity.27	The	
amyloidogenic	potential	of	 the	aromatic	amino	acid	 is	 significantly	
higher	than	that	of	the	aliphatic	ones.

Based	on	the	mechanistic	insights,	we	identified	novel	fragments,	
as	 short	 as	 tetrapeptides,	 which	 could	 form	 amyloid-like	 nano-
structures.	The	 two	notable	 systems	 are	 the	human	 calcitonin	 that	
forms	amyloid	assemblies	in	the	case	of	thyroid	carcinoma22	and	the	
ubiquitous	Medin	deposits.23	In	the	first	case,	the	known	informa-
tion	 was	 the	 pH-dependence	 of	 the	 process	 of	 amyloid	 formation	
by	 the	 full	 length	 Calcitonin	 polypeptide.22	 This	 suggested	 that	
charged	 amino-acids,	 that	 can	 change	 their	 ionization-state	 in	
various	 pH	 conditions,	 may	 have	 a	 role	 in	 the	 process	 of	 amyloid	
formation.	These	 led	 to	 the	 exploration	 of	 short	 charged-aromatic	
DFNKF	 pentapeptide	 and	 DFNK	 tetrapeptide	 fragments	 that	 can	
form	 ordered	 fibrillar	 structures.22	While	 the	 pentapeptide	 formed	
typical	amyloid	fibrils,	the	fibrils	formed	by	the	tetrapeptide	showed	
somewhat	 thicker	 diameter.	 In	 the	 other	 study	 the	 amyloidogenic	
potential	of	a	hexapeptide	fragment	of	human	medin,	a	protein	that	
forms	amyloid	deposits	that	is	observed	practically	in	all	individuals	
above	the	age	of	60.	The	aromatic	hexapeptide,	NFGSVQ,	formed	
typical	 amyloid	 structures	 with	 the	 ultrastructural	 and	 biophysical	
properties	as	described	above.23	Also	in	the	case	of	the	calcitonin	and	
medin	fragments,	the	change	of	the	phenylalanine	reside	to	aliphatic	
residues	significantly	reduced	the	level	of	amyloid	formation.22-23

While	the	amyloidogenic	potential	of	the	aromatic	moieties	is	well	
appreciated	there	is	still	a	debate	regarding	the	molecular	mechanism	
of	 their	 action.	 We	 previously	 suggested	 that	 stacking	 interactions	
of	aromatic	moieties	may	be	 the	 root	 for	 their	ability	 to	efficiently	
mediate	the	formation	of	amyloid	fibrils.28	The	order	and	direction-
ally	of	p-p	stacking	interactions	was	suggested	as	a	driving	force	for	
the	efficient	 formation	of	ordered	amyloid	assemblies.28	 Indeed,	 in	
several	 structural	 studies	 of	 amyloid	 assemblies,	 typical	 aromatic	
interactions	 were	 being	 observed	 at	 high	 resolution	 using	 NMR,	
X-ray,	 and	 electron	 diffraction.29-32	 In	 addition	 also	 theoretical	
studies,	 including	 parameter-free	 models	 and	 molecular	 dynamics,	
support	this	notion.33-37	Yet,	other	studies	had	indicated	that	proper-
ties	of	the	aromatic	moieties,	other	than	their	stacking	interactions,	
may	be	the	root	for	their	activity	at	least	in	some	systems.38	We	hope	
that	further	studies	will	help	to	give	better	answer	to	this	important	
scientific	quest.

thE sElf‑AssEmbly of shortEr AromAtic PEPtidEs
The	calcitonin	study	was	the	first	demonstration	that	a	peptide,	as	

short	as	a	tetrapeptide,	can	form	ordered	fibrillar	structures.	Similar	
to	the	calcitonin	work,	we	identified	very	short	amyloidogenic	motifs	
in	 many	 other	 amyloid-forming	 proteins	 and	 polypeptides.	 In	 our	
path	 to	 search	 for	 the	 smallest	 amyloidogenic	 structural	 motif,	 we	
studied	 the	 core	 recognition	 motif	 of	 the	 Alzheimer’s	 b	 amyloid	
peptide.	We	revealed	that	the	diphenylalanine	peptide	forms	discrete	
and	 well-ordered	 tubular	 nanostructures.39	The	 formed	 nanotubes	
may	share	some	structural	properties	with	the	amyloid	fibrils	as	they	
have	 similar	 vibrational	 spectrum	 and	 birefringence	 as	 compared	
to	 the	 fibrils.	 The	 even	 simpler	 diphenylglycine	 peptide	 forms	
nano-spherical	 assemblies	 which	 are	 similar	 to	 the	 tubular	 ones.40	
This	indicates	that	the	very	simple	dipeptide	aromatic	motifs	contain	
all	the	molecular	information	needed	to	form	well-ordered	supramo-
lecular	structures	at	the	nano-scale.

Later	studies	from	our	group	reveled	that	other	aromatic	homo-	
dipeptides	 could	 form	 various	 structures	 at	 the	 nano-scale.	 The	
structures	included,	besides	nanotubes	and	nanospheres,	also	fibrillar	
assemblies,	 nano-plates	 and	 hydrogels	 with	 nano-scale	 order.41-43	
These	structures	are	currently	being	explored	for	their	utilization	in	
various	nanotechnological	applications.44-45

inhibition of Amyloid formAtion by PEPtidE frAGmEnts
We	explored	various	directions	towards	the	use	of	aromatic	amino	

acids	 in	 the	 process	 of	 self-assembly	 at	 the	 nano-scale	 level,	 and	
particularly	amyloid	formation,	to	develop	novel	amyloid	formation	
inhibitors.	 The	 aromatic	 moieties	 represent	 recognition	 interfaces	
that	mediate	 the	 very	 early	 stage	 of	 amyloid	 formation.	We	utilize	
both	 peptide-based26	 and	 small-molecule-based46-47	 approaches	 to	
develop	new	 inhibitors	 for	 the	process	 of	 amyloid	 formation	 at	 its	
very	early	stage.	When	peptide	inhibitors	are	being	used,	we	utilize	
the	novel	inhibitory	strategy	that	is	based	on	the	use	of	the	a-ami-
noisobutyric	acid	as	a	b	breaker	of	exceptional	potency.48

sUmmAry And fUtUrE ProsPEcts
Amyloid	nanofibers	are	naturally	occurring	self-assembled	biolog-

ical	 structures.	 Aromatic	 moieties	 play	 a	 central	 role	 in	 amyloid	
fibrils	 self-assembly	by	 extremely	 short	peptides.	We	 speculate	 that	
the	 stacking	 interactions	 rather	 than	 mere	 hydrophobicity	 may	
provide	energetic	contribution	as	well	as	order	and	directionality	in	
the	 self-assembly	 of	 amyloid	 structures.	The	 hypothesis	 suggests	 a	
new	approach	 to	understand	 the	 self-assembly	mechanism,	 enables	
the	identification	of	novel	motifs,	and	indicates	new	ways	to	control	
this	process.
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