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AbSTRAcT
The transfer of phenotypes from one individual to another is a fundamental aspect 

of biology. In addition to traditional nucleic acid-based genetic determinants, unique 
proteins known as prions can also act as elements of inheritance, infectivity, and disease. 
Nucleic acids and proteins encode genetic information in distinct ways, either in the 
sequence of bases in DNA or RNA or in the three dimensional structure of the polypep-
tide chain. Given these differences in the nature of the genetic repository, the mechanisms 
underlying the transmission of nucleic acid-based and protein-based phenotypes are 
necessarily distinct. While the appearance, persistence and transfer of nucleic acid 
determinants require the synthesis of new polymers, recent studies indicate that prions are 
propagated through dynamic transitions in the structure of existing protein.

The PRoTein‑only mechAniSm
The	prion	hypothesis	was	originally	proposed	 to	explain	 the	atypical	 etiology	of	 the	

transmissible	spongiform	encephalopathies	(TSEs),	a	group	of	progressive	and	fatal	neuro-
degenerative	diseases	 including	 scrapie	 in	 sheep,	bovine	 spongiform	encephalopathy	 (or	
mad	cow	disease)	in	cattle,	and	Creutzfeldt-Jacob	Disease	(CJD)	and	kuru	in	humans.1	
Strikingly,	 these	 infectious	 diseases	 may	 also	 develop	 spontaneously	 or	 through	 genetic	
predisposition,	suggesting	that	the	genetic	determinant	is	actually	host	encoded.2

Historically,	elements	of	infection	and	inheritance	are	thought	to	rely	on	a	nucleic	acid	
core	 to	 encode	 genetic	 information.	The	TSE	 agent	 proved	 to	 be	 enigmatic,	 however,	
resisting	 exposure	 to	 manipulations	 known	 to	 destroy	 nucleic	 acids,	 such	 as	 nucleases	
and	radiation,	while	succumbing	to	treatments	that	disrupt	protein	structure,	 including	
proteases,1	detergents,3	denaturants,4	chaotropic	salts5	and	organic	solvents.6	Consistent	
with	these	observations,	a	27–30	kDa	host	encoded	protein	was	found	to	be	the	major	
constituent	of	highly	purified	brain	homogenate	preparations	that	retained	infectivity,7-10	
leading	 Prusiner	 to	 postulate	 that	 the	 scrapie	 agent	 was	 an	 infectious	 protein	 (prion)	
termed	 PrP.10	This	 once	 heretical	 model	 also	 appears	 to	 be	 applicable	 to	 a	 number	 of	
unrelated	phenotypes	particularly	in	fungi,	where	protein-only	models	accurately	describe	
the	 inheritance	of	a	wide	range	of	previously	 inexplicable	phenotypes	 including	the	use	
of	 alternate	 nitrogen	 sources,11	 the	 regulation	 of	 translation	 termination	 efficiency,11	
the	 formation	 of	 heterokaryons,12	 the	 appearance	 of	 other	 prions13	 and	 organismal	
	dependence	on	quality	control	pathways.14

While	appealing,	the	idea	of	protein-directed	inheritance	is	at	odds	with	our	classical	
view	 of	 genetics.	 In	 the	 simplest	 case,	 the	 transmission	 of	 phenotypes	 from	 one	 indi-
vidual	to	another	either	through	heredity	or	infectivity	relies	on	two	key	events.	First,	the	
genetic	determinant	of	the	trait	must	be	able	to	replicate	itself	to	produce	identical	copies.	
Second,	 a	 mechanism	 must	 exist	 to	 ensure	 that	 these	 copies	 are	 efficiently	 partitioned	
between	donor	and	recipient.	As	their	molecular	architecture	is	particularly	well	suited	to	
self-templated	replication,	nucleic	acids,	specifically	the	sequence	of	bases	found	in	these	
polymers,	form	an	effective	repository	for	genetic	information	(Fig.	1A).	The	idea	of	an	
infectious	protein,	however,	immediately	poses	a	mechanistic	dilemma	in	the	absence	of	a	
protein-directed	protein	synthetic	pathway.	Thus,	protein-only	genetic	information	must	
be	fundamentally	distinct	from	the	sequence-based	genetic	information	carried	by	nucleic	
acids	(Fig.	1B).

In	 1967,	 Griffith	 proposed	 a	 mechanism	 whereby	 a	 protein	 could	 catalyze	 its	 own	
replication.15	Based	on	this	proposal,	self-replicating	proteins,	such	as	prions,	must	adopt	
at	 least	 two	distinct	 conformations,	 a	normal	 form	and	 a	disease-associated	 form,	with	
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the	latter	serving	as	a	template	for	the	conversion	of	the	former.	In	
line	 with	 this	 prediction,	 the	 PrPC	 (cellular)	 and	 PrPSc	 (scrapie)16	
conformational	 isomers	 (conformers)	 as	 well	 as	 the	 two	 forms	 of	
the	yeast	prion	proteins	are	readily	distinguished	by	their	sensitivity	
to	 proteases,17-22	 their	 state	 of	 oligomerization,18,19,22-25	 and	 their	
secondary	structure.26

The	 idea	 of	 a	 self-replicating	 protein	 conformation	 gained	
additional	 support	 when	 this	 principle	 was	 directly	 demonstrated	
in	 cell-free	 systems.	 In	 these	 assays,	 the	 abnormal	 form	 of	 a	 prion	
protein	directs	 the	conversion	of	 soluble	prion	protein	to	an	oligo-
merized	 amyloid	 state	 sharing	 the	biochemical	 characteristics	 of	 ex	
vivo	prion-state	protein.24,27-32	In	many	cases,	material	generated	by	
in	vitro	conversion	reactions	has	been	shown	to	promote	or	accelerate	
the	 appearance	 of	 prion-associated	 phenotypes	 when	 exogenously	
supplied	 to	 susceptible	 hosts.33-39	 These	 observations	 support	 the	
idea	 that	 protein-based	 genetic	 elements,	 unlike	 their	 nucleic	
acid-based	 counterparts,	 encode	 information	 in	 their	 quaternary	
rather	than	their	primary	structures	(Fig.	1B).

Since	 the	 appearance,	 spread	 and	 reversal	 of	 prion-associated	
phenotypes	involve	changes	in	protein	state	rather	than	the	synthesis	
of	new	protein	components,	a	clear	mechanistic	understanding	of	the	
process	 requires	 insight	 into	prion	protein	dynamics	 in	 vivo.	With	
this	 idea	 in	mind,	 the	prion	mechanism	can	be	broken	down	 into	
three	discrete	fundamental	steps.	First,	non-prion	state	protein	must	
adopt	the	prion	conformation,	a	process	that	may	be	either	sponta-
neous	or	templated	by	existing	prion-state	protein.	Second,	the	prion	
template	must	be	continually	regenerated	to	provide	new	surfaces	for	
conversion.	Finally,	prion-state	protein	must	be	transmitted	to	other	
cells	 either	 by	 extracellular	 secretion	 and	 uptake	 for	 non-dividing	
cells	or	via	partitioning	to	daughter	cells	in	actively	dividing	cultures.	
Each	 step	 of	 this	 in	 vivo	 prion	 cycle	 must	 be	 undertaken	 with	
high	precision	 to	maintain	a	 strong	 link	between	protein	 state	and	
phenotype	in	order	for	the	prion	mechanism	to	serve	as	an	effective	
alternate	route	for	the	inheritance	of	traits.	In	this	review,	we	focus	on	
insights	 into	the	mechanisms	underlying	prion	propagation	in	vivo	
gleaned	from	studies	of	prion	protein	dynamics.

PRion conveRSion in vivo
The	biosynthesis	and	maturation	of	proteins	in	a	eukaryotic	cell	

is	an	 intricate	process	 that	 is	 regulated	by	the	action	of	chaperones	
and	proteases	and	that	 is	 influenced	by	subcellular	compartmental-
ization.40,41	While	the	prion	hypothesis	predicts	that	the	non-prion	
conformer	can	be	directly	remodeled	to	the	prion	form	in	the	presence	
of	 a	 pre-existing	 prion	 template,15,16	 the	 range	 of	 quality	 control	
pathways	 regulating	 protein	 biogenesis	 must	 be	 considered	 when	
extending	 the	 predictions	 of	 the	 prion	 hypothesis	 to	 a	 living	 cell.	
For	example,	protein	maturation	begins	as	 soon	as	 the	polypeptide	
emerges	 from	the	 ribosome	exit	 tunnel,	 as	 co-translationally	 acting	
chaperones41	 and	 proteolytic	 mechanisms42,43	 engage	 the	 nascent	
peptide.	 Indeed,	 productive	 folding	 pathways	 often	 lead	 proteins	
to	 their	 mature	 folded	 state	 by	 the	 time	 synthesis	 is	 complete.44	
With	these	observations	in	mind,	a	key	consideration	in	developing	
a	mechanistic	understanding	of	any	in	vivo	prion	cycle	is	the	point	
at	which	the	alternate	biogenesis	pathway	is	initiated,	whether	it	be	
nascent,	non-native	or	mature	prion	protein	(Fig.	2A).

For	 PrP,	 the	 conversion	 process	 has	 been	 extensively	 studied	
within	 the	 context	 of	 a	 number	 of	 scrapie	 infected	 cell	 culture	
systems,	which	support	conversion	of	newly	made	PrP	to	the	prion	
state	 at	 a	 low	 frequency	 (∼10%	 of	 total	 PrP).20,45,46	 Using	 these	
systems,	 several	 lines	 of	 evidence	 suggest	 that	 PrP	 converts	 to	 the	
prion	state	after	synthesis	(Fig.	2B).	First,	pulse-labeled	PrP	transits	
from	a	protease	sensitive	to	a	protease	resistant	state	on	the	time	scale	
of	hours.45,47	Second,	PrP	localization	appears	to	impact	the	conver-
sion	 process.	 PrP	 is	 a	 cell-surface	 glycoprotein,48	 and	 retention	 of	
PrP	in	the	endoplasmic	reticulum	by	treatment	with	either	brefeldin	
A49	 or	 intracellular	 antibodies50	 or	 removal	 of	 PrP	 from	 the	 cell	
surface	by	phospholipase	treatment45,51	inhibits	the	accumulation	of	
protease	resistant	PrP.	Third,	exposure	of	infected	tissue	culture	cells	
or	animals	to	anti-PrP	antibodies	inhibits	accumulation	of	protease	
resistant	PrP	and	 infectious	prions	by	 inducing	PrP	degradation	or	
by	 retaining	 it	 at	 the	 cell	 surface,	 suggesting	 that	 conversion	 may	
normally	occur	in	endocytic	vesicles.52-55	These	observations	clearly	
indicate	 that	 the	 final	 hallmarks	 of	 conversion,	 protease	 resistance	
and	 infectivity,	 appear	 late	 in	 the	 maturation	 of	 PrP.	 A	 future	
	challenge	is	to	determine	if	this	alternate	biogenesis	pathway	is	initi-
ated	at	the	time	of	synthesis	or	if	mature	PrPC	is	a	direct	substrate	for	
this	transition.45,47,49,51

The	in	vivo	conversion	process	has	also	been	studied	in	the	propa-
gation	 of	 two	 fungal	 prions,	 [Het-s],	 a	 regulator	 of	 heterokaryon	
compatibility	in	Podospora anserina,12	and	[PSI+],	a	regulator	of	trans-
lation	 termination	 efficiency	 in	 Saccharomyces cerevisiae.56	 In	 each	
case,	conversion	was	studied	by	introducing	the	non-prion	and	prion	
forms	of	the	corresponding	proteins	into	the	same	cell	by	fusion.	For	
[Het-s],	 heterokaryons	 formed	 between	 non-prion	 ([Het-s*])	 and	
prion	 ([Het-s])	 cells	 display	 the	 prion	 phenotype:	 incompatibility	
with	strains	harboring	the	het‑S allele.57	Upon	fusion	of	[Het-s*]	and	
[Het-s]	 strains,	 the	 prion	 phenotype	 can	 be	 tracked	 as	 it	 migrates	
into	 the	 non-prion	 recipient	 from	 the	 site	 of	 fusion	 by	 dissecting	
and	challenging	fragments	of	the	mycelium	with	a	het‑S	strain.12	In	
these	experiments,	spread	of	the	prion	phenotype	occurs	in	the	pres-
ence	of	cycloheximide,	 indicating	that	 the	process	does	not	require	
new	 protein	 synthesis.12	 This	 observation	 can	 be	 explained	 either	
by	direct	 conversion	of	non-prion	 state	Het-s	protein	 to	 the	prion	
form12	or	alternately	by	the	migration	of	existing	prion	state	protein	
from	the	donor	into	the	recipient	cell,	as	the	[Het‑s]	phenotype	is	a	
gain-of-function	(Fig.	2C).25	In	either	case,	a	dynamic	transition	in	

Figure 1. Genetic information can be replicated in two ways. (A) For nucleic 
acid-based determinants, replication occurs through the polymerization of 
free nucleotides (light blue), using the sequence of bases in an existing poly-
mer (dark blue) as a template. (B) For protein-based determinants, genetic 
information is encoded in quaternary structure. For the example shown here, 
a simple rectangle can be assembled with the subunits aligned along either 
their short or their long faces, leading to two distinct self-replicating polymers. 
Adapted from Caughey.142
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the	 physical	 state	 and/or	 localization	 of	 the	 Het-s	 protein	 is	 a	 key	
contributor	to	the	infectious	spread	of	the	[Het-s]	prion.

The	[PSI+]	prion,	a	conformer	of	the	Sup35	protein,	is	perhaps	the	
most	extensively	studied	of	the	fungal	prions.	Conversion	of	Sup35	
from	 its	non-prion	 [psi‑]	 state	 to	 its	prion	 [PSI+]	 state	 is	 accompa-
nied	by	a	partial	inhibition	of	normal	Sup35	function	in	translation	
termination.18,19,58	This	easily	scored	link	between	the	physical	and	
functional	 states	of	 the	protein	has	been	a	useful	 tool	 in	dissecting	
the	mechanism	of	prion	conversion	in	vivo.	By	mating	a	[PSI+]	cell	
expressing	unmarked	Sup35	to	a	[psi‑]	cell	expressing	a	Sup35	fusion	
to	the	green	fluorescent	protein	(Sup35-GFP),	conversion	of	soluble	

pre-existing	Sup35	to	an	aggregated	state	
can	be	directly	observed	in	live	cells,	and	
this	 process	 occurs	 on	 the	 time	 scale	 of	
minutes	 (Fig.	 2D).59	 This	 transition	 in	
Sup35	 physical	 state	 is	 accompanied	 by	
loss	 of	 Sup35	 activity,	 as	 measured	 by	
stop	codon	read-through.59	These	studies	
indicate	that	the	prion	state	does	not	need	
to	be	specified	at	the	time	of	synthesis	but	
instead	 can	 be	 transmitted	 to	 existing,	
mature	non-prion	state	protein.

RegeneRATion of The PRion 
TemPlATe in vivo

Although	the	original	 formulations	of	
the	 prion	 hypothesis	 suggested	 that	 the	
template	 for	 prion	 conversion	 could	 be	
a	monomer,15,16	mathematical	models	of	
prion	infectivity	are	inconsistent	with	this	
idea.60,61	 Rather,	 such	 modeling	 studies	
suggest	that	small	oligomers	would	func-
tion	 as	 the	 most	 infectious	 units.62,63	
Consistent	 with	 these	 predictions,	
ionizing	radiation,64-66	fractionation,67,68	
and	 denaturation69	 studies	 support	 a	
minimum	 infectious	 complex	 of	∼5	 PrP	
subunits,	 with	 peak	 infectivity	 in	 the	
range	 of	 14–28	 monomers.68	 Moreover,	
the	 threshold	behavior	of	 scrapie	appear-
ance,	in	which	the	sporadic	rate	of	disease	
is	exceedingly	low,	can	only	be	explained	
by	a	mechanism	in	which	multiple,	spon-
taneously	 arising	 PrPSc

	 monomers	 must	
come	 together	 to	 form	 a	 stable	 complex	
that	functions	as	an	active	template.60,70	In	
the	alternate	scenario,	every	individual	in	
the	population	would	eventually	develop	
a	 TSE,	 as	 each	 spontaneously	 arising	
PrPSc	 monomer	 would	 be	 sufficient	 to	
establish	 disease.60	 The	 concept	 of	 an	
oligomeric	 template	 is	 also	 supported	
by	 fungal	 experiments	 in	 which	 external	
delivery	of	protein	to	live	cells	and	struc-
ture-based	 mutagenesis	 studies	 have	
linked	 heritable	 and	 infectious	 [Het-s],	
[PSI+],	 [URE3],	 and	 [PIN+]	 prions	 to	
ordered	amyloid	 fibers	of	 the	Het-s,39,71	

Sup35,35,37	Ure2,33	and	Rnq138	proteins,	respectively.
Assuming	a	linear	polymer	model,	the	number	of	free	ends	(i.e.,	

the	templating	surfaces)	is	a	limiting	factor	for	the	rate	of	conversion	
and	therefore	disease	progression.60,72	Since	the	number	of	complexes	
spontaneously	arising	or	those	existing	in	an	infectious	inoculum	are	
likely	 to	be	 insufficient	 to	establish	an	 infection,62	early	 theoretical	
models	 of	 disease	 predicted	 a	 second	 vital	 step	 in	 the	 process:	 the	
continual	 generation	 of	 additional	 catalytic	 surfaces.60,72	 Various	
mechanistic	 scenarios	 are	possible	 to	 generate	 these	 secondary	 sites	
of	 nucleation,60	 but	 the	 continual	 fragmentation	 of	 existing	 linear	
templates	is	the	most	widely	favored	pathway.60,70,72,73

Figure 2. In vivo prion conversion. (A) In vivo, a prion protein (dark blue) may convert to the prion form 
at multiple points during its biogenesis pathway (see text for details). (B) PrPC (light blue ball and stick) 
likely converts to the prion form (dark blue ball and loop) at the cell surface (left) or in endocytic vesicles 
(right). (C) The prion phenotype is transmitted from a [Het‑s] prion strain (dark gray) to [Het‑s*] non-prion 
strain (white) through cytoplasmic mixing following hyphal fusion (light gray). This transmission may occur 
either through the migration of existing [Het‑s] complexes (dark blue) into the [Het‑s*] recipient and/or 
via the conversion of existing non-prion state protein (light blue ball and stick) to the prion form (light 
blue ball and loop). (D) Upon mating, a [psi‑] cell (white) to a [PSI+] cell (dark gray), the prion phenotype 
establishes dominance via incorporation of existing non-prion state protein (light blue) into the introduced 
prion complexes (dark blue).
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Indirect	 evidence	 points	 to	 the	 importance	 of	 fragmentation	 of	
PrP	 complexes	 in	 vivo.	 For	 example,	 PrPSc	 accumulation	 is	 expo-
nential	following	infection,74-76	and	only	mathematical	models	that	
consider	 fragmentation	 can	 accurately	 describe	 these	 kinetics.63,77	
Moreover,	prion	infectivity	greatly	increases	upon	partial	disruption	
of	 ex	 vivo	preparations	of	PrP	by	denaturation,69	 liposome	disper-
sion,67,78	 homogenization79	 and	 sonication,68,80	 highlighting	 the	
potent	 effect	 of	 fragmentation	 on	 prion	 titre.	 Finally,	 the	 yield	 of	
in	vitro	conversion	reactions	is	greatly	improved	by	cyclic	rounds	of	
polymerization	and	sonication,31	a	process	 that	 increases	 titres	 to	a	
level	sufficient	to	establish	an	infection	in	vivo.34	Thus,	although	an	
endogenous	fragmentation	activity	has	not	been	directly	observed	in	
the	mammalian	prion	system,	such	a	process,	whether	stochastic	or	
catalyzed,	has	the	potential	to	greatly	impact	the	establishment	and	
progression	of	disease.62

In	 S. cerevisiae,	 template	 fragmentation	 is	 an	 active	 process,	
catalyzed	 by	 the	 molecular	 disaggregase	 Hsp104.	 Hsp104	 is	 a	
member	 of	 the	AAA+	ATPase	 family81	 and	 is	 required	 for	 survival	
of	yeast	at	high	temperatures,	provided	the	organism	is	first	exposed	
to	 a	 more	 modest	 heat	 stress.82	 At	 these	 elevated	 temperatures,	
Hsp104’s	 essential	 function	 is	 the	 resolution	 of	 thermally	 induced	
aggregates.83,84	 Hsp104	 was	 first	 identified	 as	 a	 prion	 modulator	
in	a	screen	to	identify	factors	stimulating	loss	of	[PSI+]	when	over-
expressed.85	 In	 this	 and	 subsequent	 studies,	 an	 essential	 role	 for	
Hsp104	 in	 the	 propagation	 of	 all	 fungal	 prions	 was	 uncovered,	 as	
inactivation	of	Hsp104’s	ATPase	activity	by	deletion,	 expression	of	
a	 dominant	 mutant85	 or	 treatment	 with	 guanidine	 hydrochloride	
(GdnHCl)86-90	leads	to	prion	loss	in	all	cases.13,82,85,91,92

Insight	 into	 the	 mechanism	 of	 Hsp104	 action	 arose	 from	 early	
studies	on	 the	kinetics	of	prion	 loss	or	 curing	by	GdnHCl.	When	
[PSI+]	 cultures	 are	 grown	 in	 the	 presence	 of	 GdnHCl,	 [psi‑]	 cells	
begin	to	appear	after	a	4-5	generation	lag,	and	mathematical	models	
of	the	kinetics	of	this	curing	event	suggest	a	two-step	process:	(1)	a	
failure	 to	 replicate	 or	 fragment	 existing	 prion	 templates	 and	 (2)	
subsequent	 dilution	 of	 these	 complexes	 during	 cell	 division.93,94	
Consistent	with	these	ideas,	Sup35	complexes	increase	in	size	upon	
Hsp104	inactivation,95-97	and	[PSI+]	curing	only	occurs	in	actively	
dividing	 cultures	 upon	 Hsp104	 inhibition.93	 Hsp104	 appears	 to	
provide	similar	fragmentation	activity	in	the	propagation	of	[PIN+],	
as	Rnq1	complexes	also	increase	in	size	upon	Hsp104	inhibition.98	
Intriguingly,	loss	of	Sis1,	an	Hsp40	family	member,	similarly	affects	
Rnq1	 complex	 size,	 suggesting	 that	Sis1	 and	Hsp104	 cooperate	 to	
generate	additional	Rnq1	templates	in	vivo.98

Complementing	 in	 vitro	 observations	 of	 Hsp104-dependent	
	fragmentation	 of	 Sup35	 amyloid	 fibers99,100	 (see	 also	 refs.	 101	
and	 102),	 direct	 proof	 of	 Hsp104-dependent	 fragmentation	 in	
vivo	 was	 gleaned	 from	 observations	 of	 prion	 protein	 dynamics	 in	
live	 cells.	 When	 new	 protein	 synthesis	 is	 inhibited	 in	 cells	 with	
wildtype	 Hsp104	 activity,	 existing	 prion	 complexes	 marked	 with	
Sup35-GFP	become	undetectable	by	microscopy	within	hours;97,103	
however,	 upon	 Hsp104	 inhibition,	 the	 same	 complexes	 persist.97	
Since	Hsp104	does	not	alter	the	metabolic	stability	of	Sup35,97	the	
observed	loss	of	 fluorescence	 in	wildtype	cells	provides	an	assay	for	
fragmentation.	Through	the	repeated	fragmentation	of	complexes	by	
Hsp104	and	the	subsequent	incorporation	of	constitutively	expressed	
untagged	Sup35,	the	original	pool	of	Sup35-GFP	monomers	is	redis-
tributed	among	a	greater	number	of	prion	complexes,	leading	to	their	
decreased	 intensity.	Consistent	with	 this	 idea,	quantitative	 imaging	
techniques	indicate	that	Sup35-GFP	complexes	remain	the	same	size	
despite	the	progressive	loss	of	fluorescence	in	wildtype	cells.97,103

SecondARy effecTS of fRAgmenTATion
Fragmentation	 is	 predicted	 to	 impact	 two	 events	 during	

prion	 propagation:	 conversion	 efficiency	 and	 prion	 transmission	
(Fig.	3).62,72,73,77	Experimental	proof	of	 these	predictions	has	been	
provided	 by	 studies	 of	 the	 Sup35/[PSI+]	 prion	 in	 which	 dynamic	
transitions	in	aggregation	state,	as	assayed	by	fluorescence	microscopy	
and	biochemical	analyses,	were	correlated	with	changes	in	functional	
state,	as	assayed	by	the	efficiency	of	translational	termination.	Using	
these	powerful	approaches,	efficient	inactivation	of	newly	synthesized	
Sup35	 by	 incorporation	 into	 existing	 prion	 complexes	 is	 evident	
in	wildtype	cells;	however,	nascent	Sup35	accumulates	 in	a	 soluble	
and	functional	pool	upon	Hsp104	inhibition,	suggesting	a	defect	in	
the	kinetics	of	conversion	 likely	due	 to	a	 limitation	 in	 the	number	
of	 prion	 templates.18,97,104,105	This	 defect	 is	 immediately	 apparent	
within	the	first	generation	of	Hsp104	inhibition	and	can	be	reversed	
within	 the	 same	 time	 frame	 by	 reactivation	 of	 Hsp104.97,104-106	
Thus,	the	[PSI+]	prion	cycle	is	finely	tuned	in	vivo,	with	the	continual	
generation	of	new	prion	 templates	by	 fragmentation	making	a	key	
contribution	to	this	razor’s	edge	balance.

Despite	the	importance	of	fragmentation	for	conversion	efficiency,	
newly	 synthesized	 Sup35	 does	 continue	 to	 join	 the	 static	 prion	

Figure 3. Fragmentation has multiple consequences. Non-prion state protein 
(light blue ball and stick) converts to the prion form (light blue ball and loop) 
upon incorporation into existing prion complexes (dark blue ball and loop), 
which are subsequently fragmented, either stochastically or catalytically, 
to generate smaller complexes. This fragmentation facilitates spread of the 
prion templates, shown here as partitioning to daughter cells in a dividing 
culture—pathway 1, and increases the efficiency of incorporation of addi-
tional non-prion subunits (dark blue ball and stick)—pathway 2.
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complexes	 that	 persist	 upon	 Hsp104	 inhibition.97,104	 This	 incor-
poration	gradually	decreases	 the	mobility	of	complexes	 in	the	yeast	
cytosol,	 as	 revealed	 by	 fluorescence	 recovery	 after	 photobleaching	
(FRAP)	experiments.97,105	The	resulting,	largely	immobile	complexes	
are	inefficiently	transferred	to	daughter	cells,	leading	to	a	partitioning	
defect	and	ultimately	loss	of	[PSI+].97,106

modulATing PRion dynAmicS
The	 role	 of	 Hsp104	 in	 fungal	 prion	 propagation	 is	 a	 dramatic	

example	of	 the	 importance	of	dynamic	transitions	 in	prion	protein	
physical	 state	 for	 the	 propagation	 of	 prion-associated	 phenotypes.	
In	 addition	 to	 chaperone	 effects,	homotypic	 and	heterotypic	 inter-
actions	 between	 prion	 proteins	 themselves	 have	 emerged	 as	 potent	
modulators	of	in	vivo	prion	cycles.

The	prion	hypothesis	originally	predicted	that	prion	proteins	can	
physiologically	access	two	physical	states,	but	studies	in	both	mammals	
and	lower	eukaryotes	now	indicate	that	this	conformational	flexibility	
is	much	more	complex	than	the	model	first	proposed,	with	a	range	of	
physical	and	phenotypic	states	(strains	or	variants)	possible.56,107-109	
These	 variants	 have	 important	 ramifications	 for	 prion	 biology	 in	
vivo.	For	example,	PrP	variants	differ	in	both	their	incubation	times	
and	in	their	patterns	of	neurodegeneration,110	and	variants	of	the	
[PSI+],	[PIN+]	and	[URE3]	yeast	prions	can	be	distinguished	by	the	
severity	 of	 their	 phenotypes.107,109,111	 Intriguingly,	 recent	 studies	
of	both	PrP	and	Sup35	variants	revealed	a	difference	in	the	stability	
of	prion	complexes,	assessed	by	denaturation	either	with	GdnHCl	
or	SDS,95,112-114	and	this	range	of	stabilities	is	likely	due	to	confor-
mational	differences	between	the	assembled	subunits.35,37,115-122	In	
these	 studies,	 an	 increase	 in	 the	 stability	of	prion	complexes,	 and	
presumably	a	decrease	in	the	rate	of	endogenous	fragmentation,62	
diminished	 the	 severity	 of	 the	 prion	 phenotype	 (i.e.,	 incubation	
time	 for	 PrP	 and	 degree	 of	 functional	 inactivation	 for	 Sup35).	
Thus,	conformational	differences	alone	can	have	profound	effects	
on	the	physiological	consequences	of	prion	propagation.

In	 addition	 to	 sequence-independent	 effects,	 the	 efficiency	 of	
prion	 propagation	 by	 wildtype	 protein	 can	 be	 dramatically	 altered	
by	co-expression	of	sequence	variants.	For	example,	co-expression	of	
PrP	proteins	derived	from	different	species	interferes	with	templated	
conversion	of	PrP	 to	 a	protease-resistant	 form	both	 in	 vivo123	 and	
in	 vitro,124	 and	 in	 some	 cases,	 inhibition	 can	 be	 linked	 to	 single	
amino	 acid	 changes.125,126	 Similar	 findings	 have	 been	 reported	 in	
the	yeast	 system	 in	which	 fragments	of	Ure223	or	point	mutations	
within	 Sup35	 disrupt	 or	 diminish	 prion	 propagation	 by	 wildtype	
protein.127-129	 Three	 mechanisms	 have	 been	 proposed	 to	 explain	
these	 dominant	 effects.	 First,	 sequence	 differences	 could	 alter	
prion	protein	interaction	with	an	essential	trans	regulator.123,127,130	
Second,	 mutant	 proteins	 could	 interact	 with	 and	 cap	 existing	
aggregates,	 thereby	 decreasing	 their	 templating	 ability.23,127,131,132	
Finally,	mixed	complexes,	containing	wildtype	and	mutant	proteins,	
could	 adopt	 conformations	 that	 are	not	 efficiently	 inherited.127,131	
Future	studies	of	prion	dynamics	in	the	presence	of	these	dominant	
inhibitors	will	likely	be	instructive	in	revealing	their	mechanisms	of	
inhibition	in	vivo.

Inter-prion	interactions	can	also	profoundly	alter	an	in	vivo	prion	
cycle.	A	case	in	point	is	the	de	novo	appearance	of	a	new	prion.	In	
both	 yeast	 and	 mammals,	 such	 events	 are	 rare,	 but	 the	 frequency	
of	de	novo	prion	 induction	 increases	greatly	 if	 the	prion	protein	 is	
overexpressed,	 perhaps	 by	 increasing	 the	 frequency	 of	 a	 stochastic	
misfolding	 event.11,12,111,133,134	 Whether	 spontaneous	 misfolding	

occurs	during	or	after	synthesis	is	unclear;	however,	studies	in	yeast	
suggest	that	this	initiating	event	is	itself	nucleated.	In	the	case	of	the	
[PSI+]	prion,	de	novo	appearance	by	overexpression	of	Sup35	depends	
on	the	presence	of	a	pre-existing	protein	template,	most	 frequently	
the	[PIN+]	prion,	encoded	by	Rnq1.13,92,133	Recent	studies	in	vitro	
and	in	vivo	suggest	that	Rnq1	complexes	are	 likely	to	effect	Sup35	
dynamics:	Rnq1	complexes	heterogeneously	nucleate	the	formation	
of	Sup35	complexes135,136	and	are	required	for	conversion	of	 these	
nascent	Sup35	oligomers	to	a	heritable	form.137

In	addition	to	positive	 interactions	between	prions,	co-existence	
of	 multiple	 prion	 forms,	 whether	 they	 are	 different	 sequences	 or	
different	 variants	 of	 the	 same	 sequence,	 is	 often	 disfavored.	 For	
example,	 co-inoculation	of	mice	with	distinct	PrP	 variants	 extends	
incubation	 timing;138,139	 de	 novo	 induction	 of	 [URE3]	 by	 over-
expression	 of	 Ure2	 is	 diminished	 in	 [PSI+]	 strains,107	 and	 despite	
their	positive	 interactions	under	other	conditions,	 some	variants	of	
[PIN+]	destabilize	variants	of	[PSI+].140	These	observations	suggest	a	
competition	for	some	component	common	to	the	propagation	path-
ways.	One	example	of	this	idea	is	the	competition	between	different	
variants	of	the	same	prion	protein.	When	two	different	variants	are	
introduced	into	the	same	cytoplasm	by	mating	yeast,	only	one	form	
persists	when	the	resulting	diploids	are	allowed	to	grow	into	colonies,	
and	the	protein	state	is	subsequently	analyzed.114,141	This	dominance	
likely	 results	 from	 differences	 in	 fragmentation	 rate,	 allowing	 one	
variant	 to	 out	 compete	 another	 for	 the	 incorporation	 of	 the	 same	
pool	of	nascent	prion	protein.112

concluding RemARKS
The	 prion	 hypothesis	 has	 expanded	 our	 view	 of	 genetics	 to	

include	 proteins	 as	 potential	 determinants	 of	 phenotypic	 traits.	
Several	examples	of	this	alternate	route	of	inheritance	and	infectivity	
now	 exist,	 in	which	protein	 conformations	 impart	unique	pheno-
types	to	an	organism.	The	distinctions	between	prion	and	non-prion	
conformers	 and	 phenotypes	 are,	 however,	 extreme	 points	 on	 a	
continuum.	 This	 inherent	 metastability	 of	 protein-based	 genetics	
underlies	 its	 fascinating	 biology;	 that	 is,	 the	 potential	 for	 new	
phenotypes	 to	arise,	persist,	 spread	and	be	 lost	within	the	 lifetime	
of	an	organism.	The	multi-step	prion	cycle	 in	vivo	provides	many	
exquisitely	sensitive	points	of	regulation	and	potential	intervention	
into	 this	 process.	 Remarkably,	 slight	 variations	 in	 prion	 protein	
dynamics,	mediated	by	either	cis	or	trans	effectors,	have	the	capacity	
to	 profoundly	 and	 swiftly	 impact	 the	 biological	 consequences	 of	
protein-based	genetic	elements.
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