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Studies on direct and indirect defenses of lima bean (Phaseolus 
lunatus L.) revealed a quantitative trade-off between cyanogenesis 
and the total quantitative release of herbivore-induced volatile 
organic compounds (VOCs). In this addendum we focus on the 
qualitative variability in the VOC bouquets. We found intraspecific 
and ontogenetic variation. Five out of eleven lima bean accessions 
lacked particular VOCs in the bouquets released from secondary 
and/or primary leaves. These compounds (cis-3-hexenyl acetate, 
methyl salicylate and methyl jasmonate) can induce and prime 
indirect defenses in neighboring plants. Thus, the variability in 
VOC quality as described here might have substantial effects on 
plant-plant communication.

Plants can be attacked by multiple enemies and accordingly have 
evolved multiple defense strategies comprising direct and indirect 
mechanisms. Lima bean (Fabaceae: Phaseolus lunatus L.) represents 
a well established experimental plant for the analysis of three 
defenses: herbivore-induced volatile organic compounds (VOCs), 
extrafloral nectar (EFN) and plant cyanogenesis. Herbivore-
induced VOCs have manifold functions associated to indirect 
plant defenses. For example, VOCs attract arthropod predators or 
parasitoids and thus can act as an indirect defense.1-5 They also 
may be perceived by neighboring, yet-undamaged plant individuals 
(plant-plant signaling) or plant parts (within-plant signaling) and 
they prime or induce defensive responses.6 VOC-exposed plants 
may upregulate the secretion of EFN7-9 or the release of VOCs.10 
In addition to these indirect defenses, lima bean shows cyanogen-
esis as a direct defense. Cyanogenesis means the release of toxic 
hydrogen cyanide (HCN) from preformed precursors in response 

to cell damage11 and is considered a constitutive direct defense 
against herbivores12 (but see ref. 13).

Recently we demonstrated that cyanogenesis and total release 
of VOC in lima bean are negatively correlated to each other.14 
Accessions characterized by strong cyanogenesis in secondary leaves 
released little amounts of VOCs in response to jasmonic acid (JA) 
treatment, whereas total VOC production in accessions with low 
cyanide concentrations was high. Interestingly, these findings also 
held true on the ontogenetic level, since primary leaves generally 
showed low concentrations of cyanide and released high amounts of 
VOCs. However, the question remained unanswered whether these 
differences are merely of quantitative or also of qualitative nature. We 
therefore selected eleven accessions from the larger set of lima beans 
that had been used in our previous study and searched for qualitative 
differences in their VOC bouquets.

Eight out of the eleven volatiles that were quantified in our study 
were consistently released from both primary and secondary leaves 
of all accessions. However, five accessions indeed lacked individual 
compounds in secondary or primary leaves. For example, we did not 
detect cis-3-hexenyl acetate in the headspace of secondary leaves of 
accessions CV_2357 and CV_8078. The latter accession also lacked 
methyl salicylate in all individual plants analyzed (N = 10 plants). 
In contrast to secondary leaves, primary leaves of these accessions 
showed the complete blend of eleven VOCs. While CV_2357 and 
CV_8078 showed qualitative variability in VOC blends depending 
on leaf developmental stage, the accessions WT_2233 and WT_PYU 
consistently lacked methyl jasmonate in both, secondary and primary 
leaves. Strikingly, accession CV_8073, which was characterized by 
high quantitative release of cis-3-hexenyl acetate and methyl salicy-
late from secondary and primary leaves, showed a very low release of 
methyl jasmonate from secondary leaves—and lacked this compound 
completely in the headspace of primary leaves (Fig. 1).

In addition to qualitative differences, the quantitative release 
of volatiles was significantly different among the accessions. This 
holds true for the three compounds we have focused on in this 
addendum (Fig. 1) as well as for all eleven volatiles that we have 
quantified in our previous study (data not shown). However, while 
quantitative release of total VOCs from secondary leaves was nega-
tively correlated to their cyanide concentration,14 the qualitative 
differences in VOC composition were not that strictly correlated 
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to cyanogenesis. Accessions CV_2357, 
CV_8078, WT_2233 and WT_PYU were 
characterized by high cyanogenic secondary 
leaves—and lacked at least one compound. 
However, also the generally low cyanogenic 
primary leaves did not always show the 
complete VOC blend (Fig. 1B). These 
findings demonstrate a high qualitative 
variability of VOC composition that did 
depend neither on cyanogenic leaf features 
nor on leaf ontogeny.

So far it remains elusive whether the 
observed intraspecific and ontogenetic vari-
ability is of relevance in natural systems, but 
ecological effects are highly likely. For some 
tritrophic systems an intriguing degree 
of sophistication in the communication 
between plants and the third trophic level 
has been demonstrated: bouquet composi-
tions can provide specific information on 
the identity of the attacking herbivore and, 
hence, on its suitability for the prey-seeking 
carnivores.15 Variability in the composition 
of VOC compositions as observed for lima 
bean (and as also known for corn, cotton 
or cabbage16-20) may compromise the reli-
ability of herbivore-specific signals across 
a range of plant genotypes,21 although the 
ability of parasitoids to learn and associate 
successful foraging and egg-laying experience with the encountered 
odor pattern may help them in part overcome this problem.22,23

In contrast to tritrophic interactions, the efficiency of volatiles in 
plant-plant signaling appears more restricted to specific compounds. 
Recent studies on lima bean demonstrated that cis-3-hexenyl acetate 
causes priming or induction of extrafloral nectar.7,24 In other plant 
species, the release of gaseous methyl jasmonate in response to 
herbivore attack has been demonstrated to induce the synthesis of 
proteinase-inhibitors, which represent an efficient defense against 
herbivores.6,25 Methyl salicylate has been reported to be an impor-
tant elicitor of resistance responses directed towards pathogens 
and herbivores26,27 and as a carnivore-attractant.28,29 Thus, the 
quantitative variation or a complete lacking of single biological 

Figure 1. Qualitative variation in VOC mixtures 
of lima bean. Secondary (A) and primary 
leaves (B) of cultivated (CV) and wildtype (WT) 
lima beans characterized by high (HC) or low 
(LC) concentration of cyanogenic precursors in 
secondary leaves were analysed for release of 
three selected VOC compounds. Volatiles were 
collected in a closed-loop stripping over an 
experimental period of exactly 24 hrs. Values 
shown represent the mean (±SE) of five plants 
per accession. Different letters on top of the 
columns indicate means that differ significantly 
(according LSD post-hoc analysis after one-way 
ANOVA. Statistical analyses were conducted 
separately for each compound and each leaf 
stage).

active compounds of volatile blends may have dramatic effects on 
ecological interactions. We suggest that different defense strategies 
may be realized in these lima bean accessions: some genotypes have 
evolved strong cyanogenesis in secondary leaves and now ‘pay’ for 
this efficient direct defense with reduced or lost abilities for indirect 
defense and/or plant-plant communication, while others invest less 
in cyanogenesis and are more “communicative” concerning the third 
trophic level and conspecifics.
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