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Abstract
Genome-wide linkage analysis was carried out for systolic and diastolic blood pressures in the
Hypertension Genetic Epidemiology Network. We investigated the role of gene-age interactions
using a recently developed variance components method that incorporates age variation in genetic
effects. Substantially improved linkage evidence, in terms of both the number of linkage peaks and
their significance levels, was observed. Twenty-six linkage peaks were identified with maximum
LOD scores ranging between 3.0 and 4.6, fifteen of which were cross-validated by the literature. The
chromosomal region 1p36 that showed the highest lod score in our study was found being supported
by evidences from three literature. The new method also led to vastly improved validation across
ethnic groups. Ten out of the fifteen supported linkage peaks were cross validated between two
different ethnic groups, and two peaks on chromosomal region 1q31 and 16p11 were validated in
three ethnic groups. In conclusion, this investigation demonstrates that genetic effects on blood
pressure vary by age. The improved genetic linkage results presented here should help in identifying
the specific genetic variants that explain the observed results.
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Introduction
Hypertension, a significant risk factor for many cardiovascular, cerebrovascular, and renal
diseases, affects about one quarter of adults in industrialized countries.1,2 Blood pressure has
long been known to be a complex trait influenced by both genetic and environmental factors.
3,4 Over the last decade, a number of genome-wide linkage scans for blood pressure or
hypertension have been conducted.5,6 Among chromosomal regions found to be linked to
blood pressure or hypertension, very few were validated across studies or ethnic groups. This
lack of consistency may be due to different trait definitions employed in the studies, e.g.,
hypertension status versus blood pressure level. Genetic heterogeneity among populations may
explain in part the inconsistent signals found across ethnic groups. Different clustering of
interacting covariates within each of the population groups may hamper cross validation across
studies. A large number of genes are potentially involved in blood pressure regulation and the
effects of these genes may be modulated by age. Interactions among genes and environmental
factors, including age-dependent genetic effects, are routinely ignored, making the individual
gene effects even more difficult to detect. Since age is a complex biological construct, it may
serve as a surrogate for a variety of interacting covariates. If so, incorporation of gene-age
interactions may not only enhance gene discovery, it may also render findings from across
studies more comparable to each other. Here we report results of genome-wide linkage analysis
of blood pressure using this novel methodology7 and data from the Hypertension Genetic
Epidemiology Network (HyperGEN) Study.8

Methods
Subjects

The HyperGEN study is one of the four multicenter networks participating the National Heart,
Lung and Blood Institute (NHLBI) Family Blood Pressure Program (FBPP).9 The study
populations and design have been described previously in detail.8 Briefly, Non-Hispanic
Caucasian and Non-Hispanic African American families, each containing at least two siblings
with mild to severe hypertension were recruited. Severe hypertension was defined as systolic
blood pressure (SBP) ≥160 mm Hg or diastolic blood pressure (DBP) ≥100 mm Hg, or the use
of two or more classes of antihypertensive medications. Mild hypertension was defined as 140
mm Hg ≤SBP<160 mm Hg or 90 mm Hg ≤DBP<100 mm Hg, or the use of only one class of
antihypertensive medication. Random samples of age-matched subjects (188 Caucasians and
202 African Americans) from the same source populations were recruited and genotyped to
estimate allele frequencies of microsatellite markers for each ethnic group. Parents and
unmedicated adult offspring of the hypertensive siblings were also recruited. Subjects were
excluded for hypertension onset age≥60 years, hypertension secondary to primary kidney
disease or type I diabetes. Study protocols and the process for obtaining informed consent were
approved by the Institutional Review Committees at the field centers.

The total sample size of HyperGEN subjects with available blood pressure phenotypes and
genome-wide microsatellite genotype data was 3,289, of which 1,683 were Caucasians from
431 families, 1,606 were African Americans from 525 families. Among the 3,289 subjects,
2,247 were siblings and 1,042 were offspring. Linkage analyses were conducted separately in
Caucasians and African Americans.

Phenotypes and covariate adjustments
In this study we focused on systolic and diastolic sitting blood pressures (SBP and DBP). Blood
pressures were measured using the Dinamap device (model 1846 SX/P, Critikon, Tampa, FL).
At the beginning of the study, central training and certification was provided to all study
personnel. Average SBP and DBP based on the second and third measurements from a series
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of blood pressure measurements were used as quantitative traits. Before any linkage analyses,
the phenotypes were adjusted within ethnicity and sex groups by regressing on age, age2,
age3, and field center. Stepwise regression was used for the covariate adjustments: terms with
p values smaller than 0.05 were retained in forward selection and those with p values larger
than 0.05 were removed from the model in backward elimination. The residuals were
standardized to a mean of zero and a variance of one. Skewness and kurtosis were checked as
normality indicators. We removed one outlier for each of the SBP and DBP linkage analyses.

Genotyping and quality control
In all, 366 microsatellite markers, with average spacing of 9 cM, were genotyped by the
National Heart, Lung, and Blood Institute Mammalian Genotyping Service (Marshfield, WI).
The gender-averaged genetic distances (in cM) were retrieved from the Marshfield human
genetic linkage map. For more details on gel preparation, polymerase chain reaction and genetic
map, see [Weber and Broman, 2001].10 GRR11 and ASPEX12 were used to check for and
correct pedigree errors, as well as sample mix-ups between subjects. PedCheck13 and
MapMaker/SIBS14 were used to remove Mendelian inconsistencies within families, after the
pedigrees were corrected. Ethnicity-specific allele frequencies were calculated based on
separate random samples recruited in the HyperGEN study. Total missing rate of the genotype
marker data is 7.7%, which includes those not originally genotyped and those deleted due to
quality problems.

Statistical Analysis
We applied the generalized variance components model that allows both QTL and polygenic
components varying as Gaussian functions of age.7 The exact functional forms were inspired
by prior studies in cross-sectional15 as well as longitudinal16 data which demonstrated non-
monotonic age trends in genetic effects. Details of the methods can be found in supplemental
materials. We computed multi-point IBDs at each marker location with Genehunter17 software
and conducted likelihood ratio tests using the QTLtrends package.7

Results
Mean and standard deviations for SBP, DBP and age of the 3,289 subjects included in this
study are shown in Table 1, separated by sex, generation and ethnic groups. According to the
design of the study, all siblings were hypertensive, and most were treated with antihypertensive
medications, while offspring were unmedicated.

We first evaluated the gene-age interaction in the polygenetic component, which showed much
stronger age trends in SBP than those in DBP. The p values are smaller than 10−12 for SBP in
both African American and Caucasian samples, 0.00091 and 0.0046 for DBP in African
Americans and Caucasians, respectively. Under the polygenic model, SBP was estimated to
have a maximum heritability of 0.68 at age 59 in African Americans and a maximum
heritability of 0.69 at age 74 in Caucasians. On the other hand, using the traditional variance
components method based on constant heritability assumption, we obtained an average
heritability of 0.29 for African Americans and 0.24 for Caucasians. Details are presented in
Table 2.

Multipoint variance components linkage analyses with and without age variation in QTL
effects (gene-age interactions) were conducted. There were twenty-six linkage peaks identified
with logarithm of odds (LOD) scores larger than 3 in either African Americans or Caucasians
for SBP or DBP. Sixteen of the twenty-six peaks are for SBP in African Americans. The LOD
score plot is shown in Figure 1. The other linkage scan plots are presented as part of
supplementary material (Figures S1 - S3, see http://hyper.ahajournals.org). To make our
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linkage results comparable with those from traditional variance components approaches, all
LOD scores were converted to a reference test statistic with half-half mixture of point mass at
zero and one degree of freedom Chi-square, i.e., using the LOD score scale that traditional
variance components approaches employ. Those linkage peaks with maximum LOD scores
larger than 3 using gene-age interactions are presented in Table 3, LOD scores obtained under
traditional methods are included as well. Markers adjacent to the linkage peaks with LOD
scores larger than 3 are also listed in Table 3. In summary, we found twenty-three linkage peaks
for SBP, out of which thirteen peaks were validated by results from previous genome-wide
linkage scans (see the Discussion section). For DBP, we found four chromosome regions, one
of which links to SBP as well, and three of them were replicated by the literature. Here, the
replication refers to the reported blood pressure/hypertension linkage results that are listed as
top signals in those studies and in the vicinity of our regions.

Discussion
One complication of the blood pressure phenotype is that it is influenced by age in complex
ways. As individuals grow from birth, many physiological and biological changes take place,
increasing risk for hypertension as a result of accumulating changes with age. Thus age
represents a complex surrogate for a host of underlying phenomena even though its
measurement is simple and accurate. Unfortunately, most investigators treat age as a nuisance
parameter and simply attempt to “remove” the effect of age through statistical adjustment for
the effects on mean and variance. Such ad hoc approaches do not adjust away the age variation
in the covariance structure (which includes the genetic effects). Age trends were demonstrated
in both the genetic heritability and familial environmental components for systolic blood
pressure in cross-sectional15 as well as in longitudinal16 family data. These studies clearly
established the existence of age variation in genetic effects, i.e., the covariance between family
members. In addition, they demonstrated that such gene-age interactions are not monotonic in
age.

In previous genome-wide linkage analysis of hypertensive siblings conducted by the
HyperGEN Study, Rao et al18 reported that chromosome 2 may harbor hypertension
susceptibility genes in African Americans. The multipoint linkage analysis yielded a LOD
score of 2.08 at 64 cM from the p-telomere on chromosome 2. Though the evidence on
chromosome 2 was not supported well in Caucasians, the African American sample
consistently showed up in all analyses by severity of hypertension and stratified by the age at
diagnosis. When the hypertensive sibs and their offspring data were pooled, another LOD score
peak emerged at 38 cM with a peak LOD score of 2.2. The LOD score at 64 cM was, however,
reduced to 1.0 after pooling the younger offspring, suggesting that genes regulating blood
pressure may have different effect sizes at different life stages and traditional linkage analysis
likely suffered from certain limitations. In particular, despite biological evidence to the
contrary, 19, 20 all linkage analyses assumed constant effect of the QTL across all ages. With
the age trend modeled in the QTL component, the LOD scores increased to 3.7 and 2.1 at 38
cM and 64 cM, respectively. In addition, QTL variance peaked at age 41 when estimated at 38
cM, and at age 73 when estimated at 64 cM, This is concordant with our observation that
hypertensive sibling data supported linkage at 64 cM and new linkage evidence emerged at 38
cM when pooled with the offspring data. Though the original linkage peak appeared as a single
QTL and spanned a wide region on chromosome 2p, our analysis involving gene-age
interactions actually suggested two different peaks at 38 cM and 64 cM. This region contains
many potential hypertension and heart disease related genes. For example, apolipoprotein B
(apoB) is the primary surface component of low density lipoproteins particles and is associated
with an increased risk of coronary heart disease.21 PRKCE is a member of protein kinase C
(PKC) family of serine- and threonine-specific protein kinases that is involved in several
different cellular functions, such as neuron channel activation, apoptosis, cardioprotection from
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ischemia, heat shock response, as well as insulin exocytosis. The cardiac sodium/calcium
exchanger 1 (SLC8A1) is a bidirectional calcium transporter that contributes to the electrical
activity of the heart. The largest gene in the region is anaplastic lymphoma kinase (ALK) which
shows sequence similarity to the insulin receptor subfamily of kinases.

It is interesting to note that the chromosomal region 1p36, which has the highest LOD score
of 4.6 in our study, is supported by the largest number of studies in the literature.22-24 Linkage
and association analysis of candidate gene TNFRSF1B in this region, which was implicated
in insulin resistance and metabolic syndrome disorders, was studied.22 Obesity-associated
hypertension23 and essential hypertension24 were suggested to be linked to this region. In
addition, many other linkage results ended up cross-validating several hypertension or blood
pressure QTLs reported in the literature in different ethnic populations. Ten of the twenty-six
linkage peaks were cross validated in two different ethnic groups and two additional peaks
were cross validated in three ethnic groups. The linkage peak found in African Americans at
marker D1S518 on chromosome 1 was replicated in both Caucasians25 and Mexican
Americans.26 Some interesting candidate genes reside in this region as well. REN plays an
important role in renin-angiotensin-aldosterone system (RAAS) pathway that regulates blood
pressure and fluid balance. ADORA1 codes an adenosine receptor with a suggested role in
kidney function and ethanol intoxication in animal studies. The linkage peak found at D16S753
in Caucasians was cross-validated in Mexican Americans,26 Chinese,27 and Caucasians.28
SCNN1B that codes one subunit of the epithelial sodium channel and SLC5A2 that involves
absorptive mechanism for D-glucose in kidney are all promising candidate genes in this region.

Within the HyperGEN study, using traditional variance components methods failed to find
linkage results consistent across Caucasians and African Americans. Cross-validation
improved when gene-age interaction was incorporated. For example, two chromosome regions
(7q11 and 13q13-14) yielded LOD scores larger than 3 in both ethnic groups. Consistent
evidence across populations may provide added comfort that it is likely to be a true positive.
It suggests the existence of genes in those regions related to blood pressure regulation that are
common for all ethnic groups.

One limitation of this linkage analysis is that most of the hypertensive siblings were treated
with anti-hypertensive medications (although the offspring were not). The treatments must
have confounded the measured blood pressure which could potentially mask linkage evidence.
Therefore, it is possible that the results reported here may still be underestimated. Since the
data were analyzed by standard as well as the new variance components linkage methods using
the same phenotypes, the limitations due to medication effects should apply to both approaches.
Another limitation is that we modeled age trends using Gaussian functions in this study. If the
true trends severely deviate from the Gaussian functional form, the current approach may yet
again underestimate the linkage signals. While it is possible that some of the linkage peaks
identified may represent false positive errors, gene-age interactions are physiologically
plausible and supported by evidence from genetic epidemiology studies.15, 16 For a complex
trait such as blood pressure, hundreds
(http://cmbi.bjmu.edu.cn/genome/candidates/snps.html) if not thousands of genes may be
involved in the underlying regulation pathways, with the effect size of each being so small that
false negative error is a serious concern, especially at the beginning stage of hypertension gene
discovery.

Perspectives
While there have been quite a few studies devoted to dissecting the genetic effects on
hypertension, it is widely recognized that the findings from any study in general poorly cross-
validated those from other studies. Cross-validation across multiple studies is notoriously
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lacking in the literature which tends to be attributed to heterogeneity of one sort or another.
We find it interesting that Table 3 demonstrates much better cross-validation even across
ethnicity within our own study when the gene-age interaction was added. It is possible that
different studies in the literature may represent different constellations of important interactions
and ignoring such interactions may lead to inconsistent findings. We speculate that age may
be acting as a surrogate for a host of unmeasured attributes and incorporation of gene-age
interactions may overcome part of the inconsistencies. After allowing genetic effects to vary
by age, evidence for linkage has increased substantially when compared to traditional linkage
methods. The stronger linkage peaks help prioritize areas for further follow up. In addition,
these models may help estimate the ages at which subjects should be studied to maximize the
expression of the genetic effect and increase the power of association studies for various
phenotypes. This type of reasoning seems validated by a recent association study29 that took
age into account.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
SBP genome-wide linkage results for African Americans. VC: traditional variance component
approach, VC&AT: variance component with age trends.
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