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A hallmark of vascular plants is the development of a complex 
water-conducting system, which is physically reinforced by the 
heterogeneous aromatic polymer lignin. Syringyl lignin, a major 
building block of lignin, is often thought to be uniquely characteristic 
of angiosperms; however, it was demonstrated over fifty years ago that 
that syringyl lignin is found in another group of plants, known as the 
lycophytes, the ancestors of which diverged from all the other vascular 
plant lineages 400 million years ago.1 To determine the biochemical 
basis for this common biosynthetic ability, we isolated and character-
ized cytochrome P450-dependent monooxygenases (P450s) from 
the lycophyte Selaginella moellendorffii and compared them to the 
enzyme that is required for syringyl lignin synthesis in angiosperms. 
Our results showed that one of these P450s encodes an enzyme that 
is functionally analogous to but phylogenetically independent from 
its angiosperm counterpart. Here, we discuss the evolution of lignin 
biosynthesis in vascular plants and the role of Selaginella moellen-
dorffii in plant comparative biology and genomics.

Introduction

Land plants made their first appearance on land in the Middle 
Palaeozoic era, between 480 and 360 million years ago.2 Fossil 
evidences as well as phylogenetic studies suggest that the earliest land 
plants were small in stature and simple in morphology, and may 
have resembled the bryophytes (mosses, liverworts and hornworts) 
living today.3 It was not until the Early Devonian that the develop-
ment of a complex water-conducting xylem structure, strengthened 
by secondary cell wall lignification, allowed tracheophytes to domi-
nate the flora of the earth during the Carboniferous period.4 The 
evolution of lignin biosynthesis, possibly through the elaboration 
of pathways originally involved in the synthesis of UV-protective 
pigments, was an essential step towards the successful colonization of 
terrestrial environments by plants.

Lignin from flowering plants is typically composed of three 
major building blocks, namely p-hydroxyphenyl (H), guaiacyl (G) 
and syringyl (S) subunits, which are derived from three phenyl-
propanoid alcohols, p-coumaryl, coniferyl and sinapyl alcohol, 
respectively, also known as monolignols. Research in phenylpro-
panoid metabolism, mainly in Arabidopsis and other agricultural 
important dicot species, has revealed that lignin biosynthesis in 
angiosperms requires three cytochrome P450-dependent monooxy-
genases (P450s).5 Whereas cinnamic acid 4-hydroxylase (C4H) and 
p-coumaroylshikimic acid 3'-hydroxylase (C3'H) catalyze aromatic 
ring 4- and 3-hydroxylation reactions leading to the formation 
of H and G lignin, ferulic acid/coniferaldehyde/coniferyl alcohol 
5-hydroxylase (F5H) diverts G lignin biosynthetic intermediates 
towards S lignin biosynthesis. It has frequently been considered 
that F5H is a recent innovation of the angiosperms because S lignin 
is generally absent in gymnosperms and ferns; however, S lignin 
has also been found in Selaginella species,6-10 a genus representing 
the lycophyte lineage that diverged from other vascular plants 
400 million years ago (Fig. 1A and B). This observation raises the 
intriguing question of how plants separated by 400 million years of 
evolution possess a comparable lignin biosynthetic repertoire.

Independent Recruitment of a P450 to S Lignin Biosynthesis 
in Selaginella

The fact that Selaginella deposits S lignin suggests that its genome 
encodes an enzyme with activity similar to an angiosperm F5H. To 
determine the identity of this protein, we isolated Selaginella F5H 
candidate genes from a previously reported Selaginella moellendorffii 
cDNA library.11 Each of these genes was transformed into the 
F5H-deficient Arabidopsis fah1-2 mutant but only one comple-
mented all of the mutant’s phenotypes,12 suggesting that the 
encoded Selaginella P450 is a functional F5H in vivo (SmF5H). 
When expressed in yeast, the protein’s kinetic characterization 
revealed that SmF5H resembles angiosperm F5Hs in that it favors 
coniferaldehyde and coniferyl alcohol over ferulic acid as substrates. 
Interestingly, SmF5H is less than 40% identical to angiosperm 
F5Hs; whereas, Selaginella C4H and C3'H orthologs share over 
60% identity to their angiosperm counterparts. More detailed 
phylogenetic analysis indicated that SmF5H is not orthologous 
to angiosperm F5Hs, but rather is a member of a clade of eleven 
P450s unique to Selaginella. None of the other ten Selaginella 
P450s in this clade possesses F5H activity. We therefore conclude 
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that the origins of S lignin in Selaginella and angiosperms are due 
to convergent evolution of P450 activities.

Has S Lignin only Evolved Twice during Plant Evolution?

Reports from the older literature suggest that S lignin might 
have arisen multiple times in tracheophyte lineages. Using either 
histochemical staining or, by today’s standards, relatively crude 
chemical degradation methods, S lignin has been detected in fern 
and gymnosperm species, including cuplet fern (Dennstaedtia bipin-
nata), yew plum pine (Podocarpus macrophyllus), sandarac-cypress 
(Tetraclinis articulata), and all the three extant genera within the 
division Gnetophyta,6,13-16 and we have verified the presence 
of S lignin in Podocarpus macrophyllus by the highly diagnostic 
derivatization followed by reductive cleavage method (DFRC)17 
(Fig. 2). Elucidation of the molecular mechanisms that underlie the 
deposition of S lignin in these plants will further advance our under-
standing of the evolution of both P450s and plant phenylpropanoid 
metabolism.

Selaginella moellendorffii as a Model for Comparative 
Biology

The evolution of the lycophytes, including extant species like 
Selaginella moellendorffii, has been independent of all the other 
vascular plants, collectively known as euphyllophytes, since their 
common ancestors diverged 400 million years ago.11 Although 
Selaginella maintains many features that are considered to be primi-
tive for vascular plants, including dichotomous branching pattern of 
both shoots and roots, microphylls without complex vein networks, 
and a protostele with xylem surrounded by phloem18 (Fig. 1B–E), 
Selaginella may also have evolved developmental and biochemical 
processes that were uniquely elaborated in the lycophyte lineage. The 
fact that SmF5H, as well as the other ten Selaginella P450s studied in 
our research, are not orthologous to any of the known P450s found 
in other plant lineages suggests these P450s may be representative 

of such novel pathways. The recent availability of the Selaginella 
moellendorffii genome sequence makes this species an interesting 
target for comparative genomics, development and biochemistry.19

Using Angiosperm Model Systems to Study Selaginella Gene 
Function

Although the techniques for gene-knockout, knockdown and 
overexpression are still to be developed in Selaginella, our research 
and work from other labs suggests that established model systems 
such as Arabidopsis can be used as platforms to study Selaginella gene 
function in planta. For example, Harrison et al., studied the evolu-
tion of KNOX-APR interactions in determining leaf formation.20 
They showed that the APR homolog from Selaginella comple-
ments the Arabidopsis APR mutant as1-1, which provided in vivo 
evidence to support the hypothesis that Selaginella APR is function-
ally equivalent to its Arabidopsis counterpart.20 Furthermore, two 
independent groups studied GID1-DELLA mediated gibberellin 
(GA) growth regulatory mechanisms in moss and Selaginella.21,22 
Whereas one group showed that both Selaginella GID1 and DELLA 
homologs can complement the respective mutants in rice,21 the other 
group conducted a GA inducible green fluorescent protein (GFP) 
fluorescence quenching assay to show that transgenic GFP-tagged 
Selaginella DELLA can interact with Arabidopsis GID1 in vivo.22

Future Directions

Our research marks the first step towards understanding lignin 
biosynthesis, or phenylpropanoid metabolism in general, in 
Selaginella. Many other genes that encode pathway enzymes or 
regulatory factors remain to be characterized. Although Arabidopsis 
mutants for almost all the steps in the pathway are available, thus 
enabling studies similar to our recent work with SmF5H, develop-
ment of genetic resources and techniques, such as insertion mutant 
lines and Agrobacterium-mediated transformation, in Selaginella is 
still needed. This is particularly true when comes to identifying and 

Figure 1. Selaginella moellendorffii represents an ancient land plant lineage. (A) A simplified cladogram illustrating the evolutionary position of Selaginella 
in the plant kingdom. Species with fully sequenced genomes are noted in brackets. (B) The aerial part of Selaginella moellendorffii showing dichotomous 
branching at the shoot. (C) Selaginella root with dichotomous branching pattern. (D) Selaginella microphylls with a single, unbranched vein emerged from 
the stele. (E) A cross-section of Selaginella stem showing protostelic vasculature.
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characterizing novel pathways that do not exist in flowering plants. 
From a comparative genomics point of view, the recent completion 
of genome sequences for Selaginella moellendorffii and the moss 
Physcomitrella patens23 (Fig. 1) has made it obvious that we need 
sequences for genomes from representative fern and gymnosperm 
lineages. Approaching gene functions in an evolutionary context, 
propelled by the development of further genomic resources, will 
ultimately enable us to understand how plants evolved and flourished 
on earth.
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Figure 2. DFRC GC analysis of lignin monomer diversity in vascular plants. 
Arabidopsis Columbia wild type (top) and the fah1-2 mutant (middle) 
serve as positive and negative controls for the presence of syringyl lignin. 
DFRC lignin analysis was performed as previously described.17 DFRC 
analysis of a sample of Podocarpus macrophyllus (bottom) collected from 
the Chicago Botanic Garden reveals the presence of syringyl lignin in this 
gymnosperm. G/S, guaiacyl/syringyl lignin derivative; c/t: cis/trans; IS, 
internal standard.


