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Microtubules (MTs), which play crucial roles in normal cell 
function, are regulated by MT associated proteins (MAPs). Using 
a combinatorial approach that includes biochemistry, proteomics 
and bioinformatics, we have recently identified 270 putative 
MAPs from Drosophila embryos and characterized some of those 
required for correct progression through mitosis. Here we identify 
functional groups of these MAPs using a reciprocal hits sequence 
alignment technique and assign InterPro functional domains to 28 
previously uncharacterized proteins. This approach gives insight 
into the potential functions of MAPs and how their roles may 
affect MTs.

Introduction

MTs, a constituent of the eukaryotic cytoskeleton, are intracel-
lular protein polymers composed of α- and β-tubulin heterodimers, 
which grow and shrink in a highly regulated fashion. Their varied 
roles within the cell include regulating the division of nuclear mate-
rial, cell motility and maintaining cell shape and polarity. The precise 
structure and function of MT populations is governed by MAPs.1 
MAPs were originally identified in mammalian brain tissue extracts 
as proteins which co-sediment with purified tubulin.2 Recently, 
the term MAPs has been applied to any protein that can associate, 
directly or indirectly, to MTs in vivo or in vitro. Adaptations of 
early biochemical co-sedimentation methods have been carried 
out with some success, identifying a selection of proteins, which 
co-localize with MTs3 and regulate their organisation.4 The advance 
of proteomics techniques has opened up the possibility of identifying 
hundreds of MAPs from a single tissue.5,6

We recently used a co-sedimentation approach to isolate putative 
MAPs from blastoderm stage Drosophila embryos,7 resulting in the 
identification of 270 proteins, 83 of which were found to be func-
tionally uncharacterized by Gene Ontology8 (GO) in FlyBase.9 In 

that study, we analyzed the putative MAPs using a combination of 
bioinformatics, biochemistry and cell biology, in order to investigate 
MAP complexes that function during the cell cycle.7

Results and Discussion

To further investigate the potential roles of the 83 uncharacterized 
proteins and to identify functional domains within the whole set of 
MAPs, we have carried out sequence alignments using BLAST.10 
Protein sequences were downloaded from FlyBase in FASTA format 
and each MAP was aligned in turn against every other sequence 
within our data set. In order to increase the accuracy of homology 
identification, only hits identified in a reciprocal manner were 
collected.11,12 Reciprocal alignments can be visualized by edges in a 
network diagram with proteins as nodes (Fig. 1). Of the 270 proteins 
aligned, 130 gave a reciprocal alignment to another MAP, 28 of 
which were novel proteins. Functional categories were then assigned 
to each group of proteins where a common domain or family was 
found using PFam13 (Fig. 1).

Some well-studied groups of proteins, such as kinases, septins 
and isoforms of actin and their related proteins, align with one 
another without the inclusion of novel proteins. However, other 
groups of MAPs do align with previously uncharacterized proteins. 
For example, the protein CG18190 aligns with EB-1, a previously 
identified MAP of the +Tip family that binds specifically to the 
growing ends of MTs (Fig. 1A).14,15 As expected, CG18190 has 
been shown to bind to, and localize to MTs in the early embryo, 
although its precise function remains unclear16 (Hiro Okhura, 
personal communication). Dynein Heavy Chain (Dhc64C), a 
subunit of the MT motor protein complex Dynein,17 aligns 
with two novel MAPs, CG3339 and CG9492 (Fig. 1B). In good 
agreement, a previous study which searched for Drosophila homo-
logues of over 1000 known cytoskeletal proteins also predicted 
CG3339 and CG9492 to be Dynein-like motor proteins.18 By 
demonstrating that they co-sediment with MTs, we support this 
prediction. Further investigation of these proteins should help 
elucidate the functional significance of multiple dyneins in the 
early embryo.

It is worth noting that some well characterized MAPs, such as 
Lava Lamp19 and D-TACC4 align with the group of kinesin-like 
proteins and one another, but this cannot be attributed to an iden-
tifiable common domain. This may be an indication of a novel 
functional element that exists between the aligning proteins, and 
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Note

Supplementary materials can be found at:
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could be of interest in the future. Alternatively, it may be a reflec-
tion of overall structural similarity within this class of MAPs; for 
example, all proteins in this group (Fig. 1C) are predicted to possess 
coiled-coils.20 These helical secondary structures provide surfaces for 
protein-protein interactions, and are prevalent in MAPs involved in 
the regulation of mitosis.21

Another interesting cluster is based on homology between proteins 
containing G-beta repeats (Fig. 1D), a sub-category of WD-40 
repeats, which are also known to be involved in protein-protein inter-
actions.22 While several G-beta repeat-containing proteins, such as 
the Dynein Intermediate Chain Shortwing,23 Gbeta13F,7 Rack1,24 
and Bub3,25 are known to localize to MT populations, the other 
proteins in this cluster have not been reported to associate with MTs. 
Our identification of these proteins as MAPs suggests that the G-beta 
repeat may, like the coiled-coil, occur in many MAPs.

A final aspect of interest is the clustering of proteins that are 
known to form complexes together. Not surprisingly, our analysis 
found homology between all TCP-1 subunits; TCP-1 is a tubulin 
chaperone complex whose constituents have evolved from a single 
ancestral protein (Fig. 1E).26 In addition, all subunits of the 
Replication Factor C (RfC) complex fall within a single cluster 
(Fig. 1F). This heteropentameric complex loads the sliding clamp, 
PCNA, around DNA27 and the sequence similarity of all five 
proteins lies in their RfC domain, a class of AAA+ ATPase domain. 
Why this complex might bind to MTs and what effect this might 
have upon the MTs themselves, has yet to be investigated. However, 
it is interesting to note that the Pontin-Reptin complex, whose 
subunits also possess an AAA+ ATPase domain, the Tip49 domain 
(Fig. 1G), has recently been shown to interact with tubulin and 
regulate mitotic spindle assembly.28

Our biochemical approach, teamed with mass spectrometry and 
bioinformatics, has elucidated 270 novel MAPs. We have successfully 
categorized 130 of these into functional groups by reciprocal align-
ments of their protein sequences. Of the 83 previously uncharacterized 
proteins identified in our screen, 34% (28 proteins) have now been 
aligned to another MAP, giving insight into their potential functions. 
It is clear that a collaborative approach such as this has the ability 
to reveal a wealth of functional data that may not be achievable by 
individual disciplines. We feel that this work highlights the increasing 
relevance of computational methods and analyses in the biological 
scientific community, particularly in handling data on a large scale and 
making use of the vast quantity of post-genomic data available.
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Figure 1. (See page 48) Network diagram showing MAPs with aligned sequences. All reciprocally aligned proteins sequences are visualised by way of 
this network diagram using Osprey version 1.0.1.29 Nodes represent proteins while edges indicate the reciprocal alignment with e-value less than 1E-03. 
Domains and family groups are identified as InterPro codes30 and all relevant protein domains are listed for each protein (Table S1). Functional domains 
and families of each protein are indicated by the node coloring defined by the key.
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