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The photoprotective role of the universal violaxanthin cycle that interconverts violaxanthin (V), antheraxanthin (A), and
zeaxanthin (Z) is well established, but functions of the analogous conversions of lutein-5,6-epoxide (Lx) and lutein (L) in the
selectively occurring Lx cycle are still unclear. We investigated carotenoid pools in Lx-rich leaves of avocado (Persea americana)
during sun or shade acclimation at different developmental stages. During sun exposure of mature shade leaves, an unusual
decrease in L preceded the deepoxidation of Lx to L and of V to A+Z. In addition to deepoxidation, de novo synthesis
increased the L and A+Z pools. Epoxidation of L was exceptionally slow, requiring about 40 d in the shade to restore the Lx
pool, and residual A+Z usually persisted overnight. In young shade leaves, the Lx cycle was reversed initially, with Lx
accumulating in the sun and declining in the shade. De novo synthesis of xanthophylls did not affect a- and b-carotene pools
on the first day, but during long-term acclimation a-carotene pools changed noticeably. Nonetheless, the total change in a- and
b-branch carotenoid pools was equal. We discuss the implications for regulation of metabolic flux through the a- and
b-branches of carotenoid biosynthesis and potential roles for L in photoprotection and Lx in energy transfer to photosystem II
and explore physiological roles of both xanthophyll cycles as determinants of photosystem II efficiency.

It has long been recognized that photosynthesis in
plants must resolve two conflicting requirements, the
need to ramp up maximum light-harvesting efficiency
in dim light and to wind back to lower efficiency when
light is in excess, in order to maintain high rates of
growth and productivity in varying light environ-
ments (Björkman, 1981; Pearcy, 1990). A wealth of
research has established that plants adjust through an
array of morphological and molecular events that
confer photoprotection, mitigate and repair photoin-
activation of PSII, and facilitate acclimation of the
photosynthetic apparatus over different time scales in
response to variable light regimes in wild plants,
crops, and algae (Osmond et al., 1999; Demmig-
Adams et al., 2006). In the context of the light reactions,
low light acclimation optimizes light harvesting and
energy transfer to the photosystems, particularly PSII,
via enlarged functional antennae, accumulation of ac-
cessory light-harvesting pigments, and down-regulation
of unnecessary competing photoprotective processes.

High light acclimation involves increased photopro-
tection and photorepair, downsized antennae, fewer
photosystems, and sometimes changes in the PSI to
PSII stoichiometry (Osmond et al., 1999; Förster et al.,
2005). Along with their function in energy transfer to
the photosynthetic reaction centers as accessory pig-
ments to chlorophylls, the xanthophyll pigments vio-
laxanthin (V), antheraxanthin (A), and zeaxanthin (Z)
play a central role in these transformations of the
photosynthetic apparatus, especially in thermal en-
ergy dissipation and detoxification of reactive oxygen
species.

Two xanthophyll cycles are now known in terrestrial
plants, the lutein epoxide cycle (Lx cycle) based on
interconversions of lutein-5,6-epoxide (Lx) and lutein
(L) synthesized from a-carotene (a-C), and the viola-
xanthin cycle (V cycle) based on the interconversions
of V and A+Z synthesized from b-carotene (b-C;
Garcı́a-Plazaola et al., 2007). Presumably, both cycles
are catalyzed by the same enzymes, violaxanthin
epoxidase (VDE) for deepoxidation in high light and
zeaxanthin epoxidase (ZE) for the reverse reactions in
low light or darkness (Latowski et al., 2004). Redis-
covery of the Lx cycle in the parasitic angiosperm
Cuscuta reflexa (Bungard et al., 1999) has led to growing
interest in differing manifestations of this cycle in
terrestrial plants and its relationships to the appar-
ently universal V cycle (Demmig-Adams, 1998). A
complete Lx cycle seems to function on a daily basis in
both C. reflexa and the mistletoe Amyema miquelii
(Matsubara et al., 2001), even though Lx conversion
to L is sometimes slower than V to A+Z and dark
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recovery of Lx is usually slower than that of V. In-
triguingly, in shade leaves of Inga sapindoides, high
concentrations of Lx were seemingly irreversibly con-
verted to L on exposure to strong light, in marked
contrast to the co-occurring, fully reversible V cycle
(Matsubara et al., 2005). Similar responses have been
found in other woody plants with long-lived leaves in
deeply shaded canopies, including Mediterranean
oaks (Quercus spp.; Garcı́a-Plazaola et al., 2003), sweet
bay laurel (Laurus nobilis), and avocado (Persea amer-
icana; Esteban et al., 2007, 2008). This response type is
known as a truncated Lx cycle (Garcı́a-Plazaola et al.,
2007).

The functions attributed to the Lx cycle were ini-
tially based on structural analogies between Lx and A
and between L and Z (Bungard et al., 1999; Pogson and
Rissler, 2000; Matsubara et al., 2001). With increased
evidence for the possible role of L in photoprotection
(Pogson et al., 1996, 1998; Lokstein et al., 2002; Dall’
Osto et al., 2006), additional functional analogies
emerged. Furthermore, recent in vitro reconstitution
studies with light-harvesting complex proteins and
purified pigments also support a spatial overlap of the
cycles, as some pigment-binding sites can be occupied
by either a- or b-xanthophylls (Matsubara et al., 2007).
An attractive hypothesis is that photoconversion of Lx
to L might sustain or enhance photoprotection associ-
ated with the V cycle (Demmig-Adams and Adams,
1992; Niyogi, 2000). In support of this view, it has
been demonstrated in leaves of Quercus rubra and in
leaflets of Inga marginata that increasing amounts of
photoconverted L, which persist even when A and Z
are epoxidized to V, were associated with faster
engagement and higher levels of nonphotochemical
quenching (NPQ) of chlorophyll fluorescence (Garcı́a-
Plazaola et al., 2003; Matsubara et al., 2008). Further-
more, evidence from mammalian eye research as well
as from plants suggests that L also acts as a highly
efficient reactive oxygen species scavenger (Kim et al.,
2006; Johnson et al., 2007).

Broader issues, such as the roles of short-term
dynamics of the two cycles in relation to long-term
processes of shade and sun acclimation and in relation
to leaf development and age, are poorly understood.
Nonfruiting shoots of avocado trees constitute a very
suitable model system in which to address these
issues. Long-lived leaves of shade-grown avocado
contain some of the highest levels of Lx thus far
recorded (Esteban et al., 2007; Garcı́a-Plazaola et al.,
2007) and have two to four flushes of leaf initiation per
year that exhibit a form of delayed greening in which
leaf expansion precedes increases in stomatal conduc-
tance, chlorophyll content, and CO2 assimilation. Ex-
panding leaves remain sinks for up to 1 month until
they reach about 70% to 80% of full expansion (Schaffer
et al., 1991), and stomata do not become fully
functional until leaves attain 90% of full expansion
(Scholefield and Kriedemann, 1979). However, shoots
also retain old leaves through several flushes, and
leaves from the previous season contribute signifi-

cantly to total plant carbon gain (Liu et al., 2002), with
photosynthesis rates up to 50% of those in new, fully
expanded leaves (Heath et al., 2005). These properties
offer an array of opportunities for new research into
the concurrent operation of the two xanthophyll cy-
cles.

Since there have been very few studies of these
complex responses, we carried out a series of short-
and long-term light treatments that are likely to reflect
what leaves may experience in natural environments,
with the aim to gain further insight into the physio-
logical relevance of the Lx and V cycles under those
circumstances. Four types of acclimation experiments
were undertaken in this study. First, short-term accli-
mation from shade to sun addressed fast responses to
a drastic increase in the light environment, simulating
a prolonged sun fleck in shaded mature leaves or
exposure to a bright sunny day in young leaves that
had emerged during a prolonged overcast (shaded)
growth period. These experiments revealed an unex-
pected loss of L prior to deepoxidation of Lx and Vand
a reverse Lx cycle in young leaves. Second, long-term
acclimation of sun leaves to prolonged shade simu-
lated normal processes of shading by further growth of
outer canopy leaves. These treatments established the
very slow accumulation of Lx in avocado leaves.
Third, sequential sun exposures of mature leaves
over several days, followed by continuous shade,
were applied to simulate successive prolonged sun
flecks, mimicking stochastic canopy disturbance dur-
ing severe weather events, which confirmed many
responses in the above experiments, particularly the
very slow epoxidation of L to Lx in prolonged shade.
Fourth, long-term acclimation of young and mature
leaves to sun was examined. These experiments sim-
ulated sudden changes to canopy architecture as ex-
perienced during pruning and extended our
understanding of the comparative rates and magni-
tude of Lx and V cycle engagement. We discuss the
short-and long-term kinetics of both cycles in avocado
leaves of different ages during acclimation, with par-
ticular attention to the stoichiometric relationships
between xanthophyll and carotenoid pools and chang-
ing PSII efficiency.

RESULTS

Table I profiles baseline control measurements (at 6
AM) of carotenoid pool sizes on a chlorophyll basis in
shade- and sun-acclimated avocado leaves in relation
to age (size) that provide a foundation for our inves-
tigations of light responses in the Lx and V cycles in
these plants. Young leaves had 50% lower chlorophyll
content than mature leaves (Table I) but total carote-
noid pools on a chlorophyll basis were similar in
both leaf categories, so that total carotenoids per leaf
area were substantially larger in mature leaves. The
chlorophyll-based concentration of neoxanthin (N), an
important structural component of antenna Lhcs, was
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remarkably stable in both sun and shade leaves and
about one-third lower in sun leaves (Tables I and II).
The V+A+Z pool was noticeably larger in sun leaves
that also contained higher residual levels of A and Z
with age. In contrast, the Lx pool increased with age in
shade leaves and to a lesser extent in sun leaves,
whereas the L pool declined in mature shade leaves
but was more stable in sun leaves. Pool sizes of a-C
increased markedly with age in shade leaves, b-C
pools increased in sun leaves, and chlorophyll a/b
ratios were consistently lower in shade leaves, as
observed in other species (Thayer and Björkman,
1990; Krause et al., 2001). Photosynthetic efficiency
estimated from maximum photochemical efficiency of
PSII in the dark-adapted state (Fv/Fm) was slightly
lower in sun leaves than in shade leaves, and generally
PSII efficiency was highest in mature leaves. Mature
shade leaves sampled at the start and at the conclusion
of the 3-month experimental period showed stable
chlorophyll concentration on a leaf area basis and a
trend toward increased total carotenoid concentration
on a chlorophyll basis (Table II). The fact that there was
no loss of chlorophyll confirmed that mature leaves
did not senesce in long-term experiments.

Mature Shade Leaves Exposed Short Term to Sunlight
Showed Distinct Effects on the Lx and V Cycle
Pigment Pools

Typical daily photosynthetic photon flux densities
(PPFDs) experienced by leaves of avocado plants
during growth in the shade enclosure, and on expo-
sure to sun in the open greenhouse, are shown in
Figure 1A. The maximum light intensity in the sun
(1,400 mmol photons m22 s21) was about 10 times
higher than the maximum in the shade (150 mmol
photons m22 s21). Insignificant or no diurnal change in
pigment composition and PSII efficiency in leaves that
were kept in the shade indicated that neither of the
xanthophyll cycles was active in this growth environ-
ment (Table III). In fact, neither A nor Z were detect-
able at any time, and Fv/Fm remained constant at its
maximum level. When a shade-grown plant was
transferred to sunlight in the unshaded glass house
at 8 AM (experiment 1), the increase in light intensity
from 80 to 290 mmol photons m22 s21 by 9 AM was
insufficient to activate either xanthophyll cycle in
mature leaves (Fig. 1, B, C, E, and F). Interestingly,
the first apparent effect on the xanthophylls was a
decrease in L during this time (Fig. 1C). With further

Table I. Light- and age-related pigment composition of young and mature avocado leaves acclimated to sun or shade

Leaves showed distinctive light-dependent pigment profiles in response to up to 38 d of sun and more than 43 d of shade that vary with leaf length,
which was used as an indication of age (young, y1 and y2; mature, m). Total carotenoid (SCar; mmol mol21 chlorophyll) and total chlorophylls (SChl;
mmol chlorophyll a+b m22) showed a trend to higher pigment levels in mature leaves. Z was not detected (n.d.) in shade leaves without a history of
sun exposure, and base levels of Z and A persisted in sun-acclimated leaves. Photosynthetic capacity based on PSII efficiency (Fv/Fm) was estimated
from chlorophyll fluorescence. Samples were taken at 6 AM (experiments 2–5) between December 17, 2006 and January 31, 2007. Values are means6
SE (n = 4).

Leaf

Age/Size
N V A Z Lx L a-C b-C a-C/b-C

Chlorophyll

a/b
SCar SChl Fv/Fm

Shade leaves

y1, 6–7 cm 34.3 6 0.4 53.3 6 1.1 2.7 6 0.3 n.d. 1.7 6 0.6 138.5 6 0.4 23.9 6 0.5 48.6 6 0.7 0.48 6 0.02 2.62 6 0.04 306 6 2 0.15 6 0.01 0.73 6 0.01

y2, 11–13 cm 35.1 6 1.4 53.0 6 2.1 6.0 6 0.3 n.d. 2.4 6 0.1 140.2 6 3.7 27.6 6 2.1 48.4 6 1.7 0.57 6 0.04 2.49 6 0.03 313 6 10 0.16 6 0.01 0.75 6 0.02

y2, 11–13 cm 33.4 6 0.2 55.6 6 1.5 7.1 6 0.5 3.3 6 0.4 2.6 6 0.1 140.0 6 1.9 14.7 6 0.9 52.4 6 1.0 0.28 6 0.02 2.65 6 0.01 309 6 4 0.35 6 0.03 0.76 6 0.01

m, 18–25 cm 39.4 6 0.5 43.2 6 0.9 2.5 6 0.5 n.d. 19.2 6 1.4 119.1 6 2.5 73.2 6 0.6 42.2 6 0.7 1.74 6 0.04 2.65 6 0.05 339 6 3 0.38 6 0.02 0.79 6 0.00

m, 18–25 cm 34.7 6 0.5 36.6 6 1.2 0.9 6 0.1 0.8 6 0.3 16.6 6 1.2 113.2 6 2.7 51.5 6 1.8 42.4 6 1.2 1.22 6 0.07 2.81 6 0.07 297 6 4 0.50 6 0.02 0.80 6 0.01

Sun leaves

y1, 6–7 cm 21.6 6 0.7 62.0 6 5.2 7.5 6 0.4 4.4 6 0.3 3.9 6 0.4 138.1 6 1.9 4.0 6 0.2 50.9 6 1.9 0.08 6 0.00 2.89 6 0.08 292 6 8 0.15 6 0.01 0.69 6 0.03

y2, 11–13 cm 24.6 6 0.5 49.0 6 1.4 7.6 6 0.3 5.4 6 0.4 3.4 6 0.3 146.8 6 3.2 5.3 6 0.5 52.5 6 12.7 0.14 6 0.05 2.99 6 0.07 295 6 18 0.19 6 0.02 0.75 6 0.00

m, 18–25 cma 28.7 6 0.4 65.6 6 3.1 10.9 6 1.3 8.0 6 0.7 10.9 6 1.7 144.2 6 3.3 22.9 6 1.4 88.2 6 2.0 0.26 6 0.02 3.50 6 0.07 370 6 9 0.46 6 0.02 0.73 6 0.01

m, 18–25 cmb 25.0 6 4.2 90.4 6 8.5 10.5 6 1.7 11.2 6 1.0 10.5 6 1.3 169.4 6 8.8 14.0 6 0.4 84.5 6 1.0 0.17 6 0.01 3.46 6 0.02 413 6 22 0.35 6 0.03 0.72 6 0.01

aYoung shade leaves that grew into mature sun leaves. bMature shade leaves acclimated in 39 d of sun.

Table II. Long-term pigment pool stability of mature avocado shade leaves

Mature shade leaves of various ages fully expanded less than 45 d earlier (upper canopy) and fully expanded more than 45 d to up to 2 years earlier
(lower canopy) showed no signs of senescence-related loss or breakdown of total carotenoids (SCar; mmol mol21 chlorophyll) or total chlorophylls
(SChl; mmol chlorophyll a+b m22). Z was not detected (n.d.), and traces of A persisted only in leaves that were sun acclimated for 30 d prior to 43 d
of shade. Samples were taken at 6 AM between November 6, 2006 and January 30, 2007. Values are means 6 SE (n = 4).

Mature

Leaves
N V A Z Lx L a-C b-C a-C/b-C

Chlorophyll

a/b
SCar SChl

.45 d 42.0 6 0.2 28.1 6 0.2 n.d. n.d. 59.8 6 1.0 103.3 6 2.2 65.1 6 1.1 38.3 6 1.4 1.71 6 0.06 2.51 6 0.01 335 6 2 0.46 6 0.02

,45 d 39.5 6 0.2 32.9 6 1.3 n.d. n.d. 27.8 6 1.3 118.0 6 2.6 63.6 6 1.1 35.4 6 1.4 1.80 6 0.06 2.79 6 0.06 317 6 6 0.40 6 0.05

.45 da 36.6 6 3.9 30.1 6 3.9 1.3 6 0.1 n.d. 47.6 6 3.2 97.5 6 11.3 40.0 6 6.8 42.4 6 5.3 0.97 6 0.18 2.70 6 0.06 296 6 27 0.55 6 0.05

,45 da,b 43.3 6 5.9 41.3 6 6.4 2.4 6 0.6 n.d. 25.7 6 1.7 119.5 6 16.3 65.7 6 10.5 48.2 6 4.4 1.34 6 0.10 2.67 6 0.04 346 6 44 0.65 6 0.08

aSun acclimated for 30 d prior to 43 d of shade. bSun-emerged leaves that grew into mature leaves in the shade.

Lx and V Cycle Pigment Changes during Light Acclimation
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increases in light intensity, xanthophyll deepoxidation
was induced, decreasing both Lx and Vat similar rates
(Fig. 1, B and E). However, the concomitant increase in
L and A+Z exceeded the decline in Lx and V up to
2-fold (Fig. 1, B, C, E, and F). Lutein epoxide levels did
not recover after the plant was returned to shade,
indicating that epoxidation of L in the Lx cycle was
either not occurring or was to slow to be detected.
Indeed, L continued to increase for another 2 h in the
shade, rising to a steady level throughout the follow-
ing night (Fig. 1, B and C). The Lx+L and V+A+Z pools
were each augmented by 15 to 20 mmol mol21 chlo-
rophyll (Fig. 1, C and F), indicating that substantial de
novo xanthophyll synthesis occurred in addition to the
deepoxidation reactions.

In contrast, epoxidation of A+Z was initiated in the
shade without delay. The decrease in A+Z was equal
to the overnight increase in V, but 50% of the maxi-
mum A+Z levels were still present after one night,
reflecting de novo synthesis. However, the respective
a-C and b-C pools that are the substrates for L and
A+Z synthesis and the N pool that is synthesized from
V did not change significantly (Fig. 1D). Overall, the
ratio of total change in a-C branch carotenoids and
xanthophylls to total change in b-C branch carotenoids
and xanthophylls was close to 1 (Table IV). The deep-
oxidation state (DPS) of the V cycle and PSII efficiency
changed in opposite directions. Increased DPS in the sun
was accompanied by more than 50% decrease in Fv/Fm,
and neither fully recovered during the following 21 h of

Figure 1. Acclimation of mature shade
leaves during short-term exposure to sun.
The diel PPFDs are shown for the sun and
the shade environment in the glasshouse
at the canopy level where leaf samples
were taken. The dashed arrow indicates
the transfer from sun to shade light inten-
sity. Carotenoid pigment profiles and PSII
efficiency (Fv/Fm) were determined from a
shade-acclimated avocado tree exposed to
sun for 7 h and then returned to the shade
(gray area). The DPS of the V cycle was
calculated as [A+Z]/[V+A+Z]. Values are
means 6 SE (n = 4). Time of day is shown
according to the 24-h clock.
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shade (Fig. 1G). The two parameters were strongly and
linearly correlated (r2 = 0.98; data not shown).

Short-Term Sunlight Exposure of Young Shade Leaves

Induced Unexpected Synthesis of Lx and L

The substantially lower Lx and higher L concentra-
tions in very young avocado leaves that had emerged in
the shade (Table I) led us to examine responses of the Lx
andV cycle to strong light in these tissues (experiment 2;
Fig. 2). In marked contrast to mature leaves, the Lx cycle
was initially reversed in young leaves. Levels of Lx
increased during sunlight exposure at a rate of 0.6 mmol
mol21 chlorophyll h21, which was 15 times faster than
usually observed in the shade (see below), and Lx actu-
ally decreased in the shade overnight, almost returning

to initial levels (Fig. 2A). Interestingly, shade-acclimated
young leaves contained less than 10% of the Lx found in
mature leaves. The L pools increased at a rate of 2 mmol
mol21 chlorophyll h21 in the first 24 h, both during
the sun and the shade, but gradually declined to initial
levels over several shade days (Fig. 2B).

Similar to mature leaves, V decreased in sunlight,
and deepoxidation of V accounted for half of the
increases in both A and Z (Fig. 2, E and F). Epoxidation
of A+Z overnight increased the V pool accordingly,
and again a small residual amount of A+Z persisted.
The Fv/Fm was linearly and inversely correlated with
the V cycle DPS (r2 = 0.79; data not shown).

The increase of the Lx+L pool (45 mmol mol21

chlorophyll) and the V+A+Z pool (30 mmol mol21

chlorophyll) by de novo synthesis in young leaves

Table III. Steady-state carotenoid pool sizes and PSII efficiency of mature leaves in the shade

The diel responses of shade-acclimated, mature avocado leaves were analyzed in their shade growth environment of the glasshouse. The light
intensities are shown in parentheses (PPFD; mmol photons m22 s21) and in Figure 1. Carotenoid concentrations are expressed per chlorophyll a+b
(mmol mol21 chlorophyll). A and Z were not detectable (n.d.). Dark-adapted Fv/Fm (arbitrary units) was determined from chlorophyll fluorescence to
estimate PSII efficiency. Values are means 6 SE (n = 4). No statistically significant differences (Tukey multiple comparison test; P . 0.05) were
detected between the values in each column.

Time

(PPFD)
N V A Z Lx L a-C b-C a-C/b-C

Chlorophyll

a/b
Fv/Fm

8 AM (10) 44.3 6 0.6 35.6 6 0.9 n.d. n.d. 31.6 6 0.5 122.0 6 2.9 62.9 6 0.6 34.7 6 1.4 1.82 6 0.13 2.61 6 0.06 0.79 6 0.02
12 PM (150) 42.2 6 0.5 34.0 6 0.3 n.d. n.d. 32.9 6 1.2 118.2 6 2.1 64.5 6 1.0 34.6 6 1.6 1.87 6 0.14 2.57 6 0.06 0.78 6 0.02
3 PM (80) 43.9 6 0.9 34.5 6 0 7 n.d. n.d. 31.5 6 0 7 119.1 6 3.4 62.2 6 0.7 40.4 6 1.8 1.55 6 0.13 2.54 6 0.15 0.77 6 0.02
5:30 PM (52) 45.5 6 0.3 35.4 6 0.8 n.d. n.d. 32.0 6 1.3 117.6 6 3.0 60.9 6 1.4 39.7 6 2.0 1.54 6 0.09 2.52 6 0.11 0.77 6 0.02

Table IV. Changes in total pool sizes of a-branch compared with b-branch carotenoids during
acclimation of sun leaves to shade and shade leaves to sun

The a-branch carotenoid pool [a(C+X)] was calculated as the sum of the means of the a-C+Lx+L pools.
The b-branch carotenoid pool [b(C+X)] is the sum of the means of the b-C+V+A+Z+N pools. The
differences (D) in pool size were assessed by comparing the amounts of pigments at the beginning and end
of the respective sun and shade periods. Negative values indicate decreases in total pool size.

Treatment Da(C+X) Db(C+X) Da/Db(C+X)

mmol mol21 chlorophyll

Shade acclimated / sun (short term)
Young (y1)

a 8 h of sun 36.5 41.6 0.9
16 h of shade 40.0 46.2 0.9

Young (y2)
a 8 h of sun 21.1 20.6 1.0

16 h of shade 44.8 46.7 1.0
Matureb 6–8 h of sun 10.4 6 1.8 9.1 6 2.2 1.1

16–18 h of shade 14.6 6 1.7 13.6 6 2.2 1.1
Shade acclimated / sun (long term)
Youngc 19 d of sun 41.2 72.6 0.6
Maturec 19 d of sun 52.2 124.0 0.4

Sun acclimated / shade (short term)
Youngd 8 h of sun 9.7 8.4 1.2

16 h of shade 33.5 51.0 0.7
Matured 6–8 h of sun 19.3 14.4 1.3

16 h of shade 16.3 14.8 1.1
Sun acclimated / shade (long term)
Younge 43 d of shade 235.6 231.4 1.2
Maturee 43 d of shade 236.3 235.3 1.0

aData from experiment 2, first diel. bData from experiments 1, 4, and 5, first diels (n = 3). cData
from experiment 5, days 0 to 19. dData from experiment 3, first diel. eData from experiment 3,
days 0 to 43.
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(Fig. 2, C and F) was twice as much as in mature leaves.
The young leaves had less than half the amount of a-C
than mature leaves but comparable b-C contents. Once
again, both carotene pools remained relatively un-
changed despite large de novo synthesis of xanthophyll
cycle pigments (Fig. 2, D and H), and the equal ratio of
a(C+X) to b(C+X) was maintained (Table IV).

Long-Term Shade Acclimation of Mature and Young Sun
Leaves Was Dominated by Changes in Lx Cycle Pigments

Long-term shade acclimation was examined to dis-
cover whether sun leaves could accumulate Lx in the

shade and reestablish xanthophyll pigment pools
characteristic of shade leaves (experiment 3). A
shade-grown plant was acclimated to sun for 30 d
and then returned to shade for 43 d (Fig. 3). In spite of
the long-term sun exposure, mature and young leaves
initially contained amounts of Lx similar to those in
shade-grown leaves in experiments 1 and 2. The Lx
pools increased in the shade by another 15 to 20 mmol
mol21 chlorophyll in both mature and young leaves
(Fig. 3A). However, Lx accumulation (0.041 mmol
mol21 chlorophyll h21) occurred in mature leaves
about 60 times slower than the decrease of Lx by
deepoxidation observed during short-term sun expo-

Figure 2. Young shade leaves during
short-term exposure to sun (experiment
2). Carotenoid pigments of two sizes of
shade-acclimated, young leaves, y1 (white
symbols; 6–7 cm in length) and y2 (black
symbols; 11–13 cm in length), were com-
pared when exposed to sun for 8 h on day
0 (6-2-6 sampling protocol) and during the
following 5 d in the shade indicated by the
gray area (6 AM samples on days 2 and 5).
Values are means 6 SE (n = 4).
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sure (Fig. 1B). In the young sun leaves, Lx accumula-
tion (0.021 mmol mol21 chlorophyll h21) was 30 times
slower in the shade than in young shade leaves during
short-term sun exposure (Fig. 2A). The L pool in
mature leaves increased transiently for 1 d after trans-
fer to shade and then decreased by 50 mmol mol21

chlorophyll (about 2-fold more than the increase in Lx)
to stable levels (Fig. 3B). Young leaves showed a
similar, transient increase (compare with Fig. 2, B
and C), followed by a stronger decline in L pool size
(about 90 mmol mol21 chlorophyll within 7 d), before
recovering about 50% of this loss over the next 20 d. In
contrast to mature leaves that showed no changes in

a-C, the recovery of L in young leaves was accompa-
nied by a quantitatively similar increase in the a-C
pool (Fig. 3D).

V cycle pigment pools generally showed less vari-
ation during shade acclimation, and V+A+Z pools
were not changed significantly after 43 d (Fig. 3, E–G).
The transient increase and decrease of V during the
first shade day was more prominent in young leaves
and coincided with similar increases in b-C (Fig. 3H).
Only traces of A (and no Z) were detectable in both leaf
types during the first 4 d, when the V cycle was fully
epoxidized (Fig. 3F). The transient increases in V
during the first shade day coincided with similar

Figure 3. Comparison of mature and
young sun leaves during long-term accli-
mation to shade (experiment 3). An avo-
cado tree was exposed to sun for 30 d to
establish full sun acclimation of mature
(m; black symbols) leaves and to produce
new, young sun leaves (y; 11–15 cm in
length; white symbols) that expanded to
the same size as mature leaves during the
experiment. Transfer to shade (gray area)
occurred on day 0, and shade acclimation
responses of carotenoid pigment pools
were examined at intervals (6 AM samples)
over 43 d. Values are means 6 SE (n = 4).
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increases in b-C (Fig. 3H), and pools of Vor A showed
no significant changes after long-term shade acclima-
tion (Fig. 3, E and F). The a(C+X) and b(C+X) pools
declined by the same amounts in leaves of both age
categories, and the ratio of change was about 1 (Table
IV). Thus, long-term shade acclimation of sun leaves
primarily affected the pools of Lx cycle pigments in
both mature and young leaves and a-C specifically in
young leaves. On the whole, the acclimation process
seems to be associated with larger fluctuations of
pigment pool sizes in the young leaves.

Intermittent Sun Exposure on Mature Leaves during

Long-Term Shade Acclimation Induced De Novo
Synthesis and Transient Alterations in the Lx and
V Cycles

To gain insight into the effect of intermittent sun
exposure on long-term shade acclimation, a shade-
grown plant was exposed to sunlight from 6 AM to 2 PM

on days 0, 2, and 9, followed by uninterrupted shade
until day 44 (experiment 4). Frequent sampling for
pigments and measurements of chlorophyll fluores-

cence during the first diel (data not shown) confirmed
the response pattern of mature shade leaves to short-
term sun exposure shown in Figure 1. Changes in
pigment composition showed two phases that distin-
guished days 0 to 10 (intermittent sun exposure) from
days 10 to 44 (unperturbed shade). In agreement with
experiment 1, sun exposure on days 0 and 2 initiated
substantial deepoxidation of Lx and V and de novo
pigment synthesis in mature shade leaves, but sun on
day 9 had no additive effect (Fig. 4). The increase in L
(100 mmol mol21 chlorophyll), initiated by two sepa-
rate days of sun, doubled the L pool and was much
larger than the decrease in Lx (30 mmol mol21 chloro-
phyll) that reduced the Lx pool to 25% of its original
size (Fig. 4, A and B). The net increase of the Lx+L pool
indicated that de novo synthesis of L was strongly
induced in this first phase. During the following un-
perturbed 35 d in the shade, Lx and L pools readjusted
to their initial levels. The 3-fold greater decline in L than
increase in Lx during this phase suggested that L
epoxidation was accompanied by other turnover pro-
cesses.Moreover, the extent of truncation of the Lx cycle
was apparent from the approximately 130 times faster

Figure 4. Intermittent sun and shade ac-
climation responses of mature shade
leaves (experiment 4). Shade-acclimated
trees were repeatedly exposed to sun (from
6 AM to 2 PM on days 0, 2, and 9) and then
kept continuously in the shade (gray areas)
until day 44. Samples taken at 6 AM are
shown. Carotenoid pigment pool sizes,
DPS of the V cycle, and PSII efficiency
(Fv/Fm) are means 6 SE (n = 4).
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rate of Lx deepoxidation on day 0 (3.5 mmol mol21

chlorophyll h21) compared with L epoxidation from
days 10 to 44 (0.027 mmol mol21 chlorophyll h21).
Changes in the V cycle pigment pools were less

pronounced than in the Lx cycle (Fig. 4, D and E), and
although A+Z increased (from 25 to 37 mmol mol21

chlorophyll) in the sun as expected (2 PM data points
not shown), 5 to 15 mmol mol21 chlorophyll A+Z was
detected after each night at 6 AM for many days (Fig.
4E). Part of the overnight epoxidation of the A+Z pool
during days 0 and 2 contributed to the substantial
increase in V (24 mmol mol21 chlorophyll) that per-
sisted almost throughout the experiment, but the
doubling of the V+A+Z pool indicated de novo syn-
thesis of V cycle pigments in addition. The residual
A+Z was reflected in sustained DPS (Fig. 4F) and was
highly correlated with the Fv/Fm (r2 = 0.88; Fig. 7C)
that declined following sun exposure on days 0 to 2
from 0.74 to 0.41 and that recovered to about 80%
during long-term shade. As observed previously, there
were no significant changes in the a-C or b-C pool
sizes during sun exposure on days 0 and 2. However,
the decline in a-C (35 mmol mol21 chlorophyll) over 9
d was matched by an increase in the pool of b-C (Fig.
4C), and the a-C to b-C ratio declined from 1.9 to 0.6.

Long-Term Sun Acclimation of Mature and Young Shade

Leaves Showed Large Increases in Both Lx and
V Cycle Pigments

Long-term changes in the pigment composition of
mature and young shade leaves during sun acclimation
were examined in experiment 5 (Figs. 5 and 6). Mature
leaves showed the expected 60% deepoxidation of
Lx (about 10 mmol mol21 chlorophyll) when first
exposed to sunlight on day 0 (Fig. 5A) but, uncharac-
teristically, the Lx pool increased slightly from day 10
onward. Young leaves had much lower Lx levels ini-
tially (15% of mature leaves), showed the same light
stimulation of Lx synthesis and lack of Lx deepoxida-
tion as in the short-term sun exposure (Fig. 2), and
accumulated Lx (0.009 mmol mol21 chlorophyll h21) to
the same level as in mature leaves in the long term (Fig.
5A). The L pool in mature leaves rapidly increased over
the first 10 d of sun exposure (Fig. 5B), doubling the
pool size, and by day 39 there was still 50%more L than
at day 0. The decrease in Lx (10 mmol mol21 chloro-
phyll) and a-C (34 mmol mol21 chlorophyll) during the
first 10 d was only half the concurrent increase in L (93
mmol mol21 chlorophyll; Fig. 5D). Although initially a
little higher than in mature leaves, the L pool of young
leaves showed larger transients and declined to 25
mmolmol21 chlorophyll less than inmature leaves after
39 d in the sun. The changes in total Lx+L pools largely
matched the changes in the L pools in mature and
young leaves (Fig. 5C), showing that de novo synthesis
was strongly induced also during long-term sun expo-
sure and that synthesis and turnover were the main
processes determining the L pool size. Compared with
mature leaves, young shade leaves contained low

amounts of a-C (28% of mature leaves) and had more
b-C, as observed earlier (Fig. 2). Sun acclimation did not
affect a-C in young leaves, but the increase in b-C was
similar to that in mature leaves (Fig. 5, D and H).

The V pool in mature leaves increased much more
during the first 18 d (55 mmol mol21 chlorophyll) than
in young leaves over 39 d (10 mmol mol21 chlorophyll)
in the sun (Fig. 5E). Overnight, both leaf types retained
similar A and Z pools (up to 26 mmol mol21 chloro-
phyll A+Z), so that the V cycle was never fully
epoxidized throughout the sun acclimation period
(Fig. 5, E and F). De novo synthesis increased the total
V+A+Z pool by about the same amount as the b-C
pool (Fig. 5, G and H). Interestingly, the increase in
a(C+X) during long-term sun acclimation was only
about half that of b(C+X) in leaves of both age classes
(Table IV).

The functional state of the V cycle was tracked
throughout the experiment by comparing the differ-
ences in V, A, and Z levels (DV, DA+Z) at the end of the
sun (6 AM–2 PM) or the end of the shade (2 PM–6 AM)
exposure (Fig. 6). Balanced operation of the V cycle
(i.e. similar amplitudes of changes in V compared with
A+Z) was achieved earlier in mature leaves (after 10 d)
than in young leaves (after 19 d). However, the diel
changes in the V cycle pigments in younger leaves
(Fig. 6B) were also smaller, which most likely reflected
differences in the intensity of sun exposure as the
blades of young leaves grew in a steeper upward angle
in contrast to the nearly horizontal mature leaf blades.

Correlations between PSII Efficiency and Lx and V Cycle
Pigments in Avocado Leaves Differed Depending on Age
and Light Acclimation States

Correlations between PSII efficiency (Fv/Fm), DPS,
and differential Lx and V cycle pigment accumulation
of potential physiological relevance were investigated
during sun and shade acclimation (Fig. 7). Strong
inverse linear correlations were found between Fv/Fm
and DPS of the V cycle throughout each diel during
long-term sun acclimation (experiment 5), in accor-
dance with the general notion that accumulation of
A+Z reduces PSII efficiency. Interestingly, the slope of
the regression line was much steeper during the first
diel after transfer from shade to sun than during the
diels after 10, 19, and 39 d in the sun (Fig. 7A).
Likewise, decrease in Fv/Fm correlated well with in-
creased DPS during long-term shade acclimation in-
terrupted by intermittent sun exposure (experiment 4).
The slope of declining Fv/Fm against increasing DPS in
sunlight during the initial diels (days 0 and 2) was half
the slope found between increasing Fv/Fm and de-
creasing DPS (due to residual A+Z at 6 AM) during the
slow recovery of PSII efficiency in the following 34
unperturbed shade days (Fig. 7B). In addition to the
strong inverse correlation between decline in Fv/Fm
and increase in A+Z pool size throughout long-term
shade acclimation in this experiment (Fig. 7C), there
was a direct, but weaker, correlation between the
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decline in Fv/Fm and that in Lx (Fig. 7D). Clearly, there
was a link between Fv/Fm, DPS, or Lx, but many
factors, such as duration of light treatments and/or the
age of the leaves, modified these relationships.

DISCUSSION

Loss of Lutein Precedes Engagement of the Lx and V
Cycles and De Novo Synthesis of Xanthophylls

Our experiments on shade-to-sun and sun-to-shade
acclimation in avocado, a species in which shade

leaves accumulate high concentrations of Lx, revealed
a variety of novel adjustments in carotenoid pigment
pools that may have roles in optimizing photosyn-
thetic efficiency in changing light environments. An
interesting observation was that exposure of a shade-
grown plant to the natural, gradual increase in irradi-
ance to 1,400 mmol photons m22 s21 over 7 h in the sun
caused an initial, small decline in L (5–15 mmol mol21

chlorophyll) prior to measurable deepoxidation of Lx
or V (Figs. 1 and 8). A similar but more rapid loss of L
over the first 15 to 120 min was also observed when
avocado plants were transferred abruptly from shade

Figure 5. Comparison of mature and
young shade leaves during long-term ac-
climation to sun (experiment 5). A shade-
acclimated avocado tree was transferred
to sun on day 0. Carotenoid pigments were
examined in mature (m; black symbols)
and young (y; white symbols) leaves at
intervals according to the 6-2-6 protocol,
and 6 AM samples are shown. Values are
means 6 SE (n = 4).
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to full sunlight (Esteban et al., 2008). Evidently, neither
deepoxidation of Lx nor de novo synthesis from a-C is
sufficiently active to sustain the pool of L in mature
shade leaves of avocado under these conditions. One
possibility is that this early loss of L is caused by
photooxidation before other photoprotection mecha-
nisms are engaged and sufficient Z has accumulated to
scavenge singlet oxygen (Havaux and Niyogi, 1999;
Johnson et al., 2007). Lutein is a plausible alternative to
Z as an effective scavenger of reactive oxygen in vitro
(Peng et al., 2006). Although biophysical quenching
due to L and Z predominate in the retina of the human
eye (Kim et al., 2006), detection of photooxidation
products of L and Z (Khachik et al., 1997) indicate that
chemical quenching of these substrates also occurs to
some extent in this system. Perhaps chemical quench-
ing of L has a role as an early target for photooxidation
in the antenna or reaction centers of the photosynthetic
apparatus, similar to the D1 reaction center protein of
PSII that is most vulnerable to photooxidative damage,
thereby protecting the other PSII proteins (Chow et al.,

2005). Further evidence is needed to show whether
L serves as an antioxidant in response to light stress
in vivo.

Implications for the Concurrent Operation of VDE and

ZE in the Lx and V Cycles in Avocado Leaves

Restoration of the Lx pool after fast deepoxidation in
just hours of sun exposure is exceptionally slow in
mature avocado leaves (Figs. 1, 4, and 8). A month or
more in deep shade is required, which is 1 to 2 orders
of magnitude slower than in other Lx-accumulating
species and represents the slowest recovery of Lx so
far reported (Garcı́a-Plazaola et al., 2007). In contrast,
C. reflexa (Bungard et al., 1999) andA. miquelii (Matsubara
et al., 2001) essentially complete epoxidation of L
overnight, and I. marginata recovers Lx over 5 d in
the shade (Matsubara et al., 2008). Species and tissues
seem to differ markedly in the extent to which L serves
as a substrate for ZE (Bouvier et al., 1996), and
depending on the age and light acclimation state of

Figure 6. Comparison of diel changes in V cycle
xanthophyll pigments of mature (A) and young (B)
shade leaves during long-term acclimation to sun
(experiment 5). The changes in the amounts of V (DV)
and A+Z (DA+Z) were calculated from the means
(n = 4) of the xanthophyll concentrations at the
beginning (6 AM) and the end (2 PM) of sun exposure
(deepoxidation activated) and the beginning (2 PM)
and the end (6 AM the next morning) of the subse-
quent shade period (epoxidation activated; gray
area). Samples were collected according to the
6-2-6 protocol on days 0, 10, 19, and 39. Leaves were
exposed to sun every day throughout the experiment.
At each sampling day, the maximum V cycle deep-
oxidation in the sun period was fully reversed during
the following shade period.
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the leaves, epoxidation in avocado may occur 60 to 130
times more slowly than deepoxidation in the Lx cycle.
As pointed out earlier, differences in recovery kinetics
of V and Lx in various species suggest that ZE has
variable affinity for (or access to) L and/or that con-
ditions under which ZE functions in vivo may vary
(Matsubara et al., 2003; Snyder et al., 2005). For exam-
ple, studies in thylakoids of shade leaves of I. sapin-
doides (Matsubara et al., 2007) led to the hypothesis
that photoconverted L was possibly inaccessible to ZE
because it had been inserted into the L2 site in antenna
Lhcbs.

Other processes may also contribute to the slow
recovery of Lx pools in avocado. For example, residual
VDE activity in the shade could delay Lx accumula-
tion. However, this seems less likely because VDE
requires a low lumen pH of about 5 for association
with the antenna, which is a prerequisite for activation
(Hieber et al., 2000). One would expect that trans-
thylakoid proton pumping due to photosynthetic elec-
tron flow becomes negligible in deep shade and ceases
almost immediately in darkness. The transthylakoid
DpH is dispersed within minutes in Arabidopsis
(Arabidopsis thaliana; Ruban et al., 2007), so that the

Figure 7. Relationships between PSII efficiency, V
cycle deepoxidation, and xanthophyll pigment con-
centration during sun and shade acclimation. The
DPS of the V cycle was calculated as [A+Z]/[V+A+Z],
and dark-adapted Fv/Fm was used as an indicator of
PSII efficiency. A, Fv/Fm versus DPS in mature and
young leaves during long-term sun acclimation in
experiment 5 (data from the 6-2-6 protocol; means6
SE, n = 4). The slope of the regression line during the
first exposure to sun on day 0 (black symbols) differed
markedly from those obtained on days 10, 19, and 39
(white symbols). B, Fv/Fm versus DPS in mature leaves
during initial sun exposures on days 0 and 2 in
experiment 4 (white symbols; means6 SE, n = 4) and
during long-term shade acclimation (6 AM samples;
black symbols; means 6 SE, n = 4). C and D, Fv/Fm
versus A+Z (C) and Fv/Fm versus Lx (D) concentrations
at 6 AM during long-term acclimation to shade after
short-term sun exposures in experiment 4.

Figure 8. Summary of the distinctive responses of carotenoid pigments during short- and long-term acclimation in avocado
leaves. The schematic shoot shows the relative positions and sizes of young and mature leaves in the canopy. Relative changes in
pigment pools are represented by the approximate length and direction of the vertical arrows. Horizontal arrows indicate
transitions from short- to long-term acclimation. Young leaves stand out due to the reversal of the Lx cycle in the light, with small
but rapid synthesis of Lx in the light and decrease in the dark. This is in marked contrast to the rapid deepoxidation of Lx in mature
leaves and its very slow recovery of Lx on return to shade. De novo synthesis (de novo) increases total Lx+L and V+A+Z pools
during sun acclimation, whereas pigment degradation (degrad) occurs during long-term shade acclimation. The a-C and b-C
pools fluctuate in size independent of changes in the derived xanthophylls (Lx+L and V+A+Z, respectively). Young leaves show
the fastest and largest absolute changes in a- and b-branch pools, but the ratios of total change in carotenoids and xanthophylls in
each branch were close to 1.
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lumen pH should rapidly approach neutral and inac-
tivate VDE. Even though ATP hydrolysis in the dark
can sustain lumen acidification and promote VDE
activity (Gilmore and Yamamoto, 1992), it seems un-
likely to persist for prolonged periods in deep shade.
The remarkably truncated Lx cycle in mature leaves of
avocado suggests that these tissues may be ideal for
testing the roles of the above factors in determining the
capacity for Lx synthesis.
Our comparative analysis of mature and young

leaves of shade-grown plants opens up even more
interesting features of Lx cycle regulation in avocado.
Whereas mature leaves showed the typical truncated
Lx cycle, the Lx cycle in young leaves was fundamen-
tally different and appeared to function in reverse.
During short-term sun exposure, Lx accumulated in
the sun and decreased in the shade (Figs. 2 and 8). In
fact, this Lx accumulation in the sun was 1 order of
magnitude more rapid in young leaves than the slow
recovery of Lx pools in mature leaves in the shade.
This unusual response is clearly related to the devel-
opmental stage of the leaf, since it disappeared be-
tween 10 and 20 d as young leaves grew older in
sunlight (experiment 5; data not shown). The Lx
accumulation in sunlight may be related to the fact
that young leaves are sink rather than source leaves
(Schaffer et al., 1991) and are likely to have high
internal CO2 concentrations that would saturate pho-
tosynthetic capacity during leaf expansion and mod-
ulate lumen acidification in the chloroplasts at high
light intensities. However, we did observe deepoxida-
tion of V in young leaves under these conditions.
Since ZE activity is evidently not confined to very

low light and darkness (Frommolt et al., 2001), Lx
synthesis in the light may be a “spillover” driven by
the very extensive de novo synthesis of L in young
leaves. The high ZE activity in young avocado leaves
in the light is also suggested by the two times faster
epoxidation of A+Z to V. There is little other evidence
that the amount of L alone could determine Lx accu-
mulation. The absence of Lx in Arabidopsis lutOE
(lutein overexpressor) mutants, in which a significant
fraction of V is replaced by L (Pogson and Rissler,
2000), suggests that ZE has low affinity for, access to,
and/or activity with L as a substrate in this species.
The contrasting responses in the Lx cycle of young
versus mature avocado leaves present another chal-
lenge for evaluation of ZE and VDE activities in vivo.
Priorities for a better understanding of the Lx cycle in
avocado include further examinations of pigments in
the binding sites of antenna complexes and investiga-
tions into the biochemical properties of VDE and ZE in
this species.

De Novo Synthesis of Xanthophylls and Flux Regulation
through the a- and b-Branches of the Carotenoid
Pathways during Photoacclimation

De novo synthesis of L and to a lesser extent of A
and Z during sun acclimation may be a distinctive

feature of avocado and a few other species (e.g.
Anarcardium excelsum; Krause et al., 1999). In contrast,
some other tree species show little or no change in L
but increased V+A+Z pools when exposed to high
light (Logan et al., 1996; Krause et al., 2001), and the
low-canopy species Tilia cordata does not adjust L or
V+A+Z pools to excess or limiting light in the field,
whereas the high-canopy species Populus tremula tends
to decrease L in high light and to increase V+A+Z pools
(Niinemets et al., 2003). Regulation of carotenoid bio-
synthesis and degradation is still poorly understood
(Cuttriss et al., 2006), and some insights into differential
flux rates may be gained from examining relationships
between the de novo synthesis of L or A+Z and the
pools of their a-C and b-C substrates in our study.

During the first day after transfer to sunlight, most
of the increase in L in mature and especially in young
leaves can be attributed to de novo synthesis, most of
which occurred in the light (Figs. 1 and 2; Table IV).
Likewise, additional A and Z were synthesized in
young leaves in these experiments, but synthesis of L
exceeded that of total V+A+Z by up to 40%. In both
cases, carotenoid pools remained unchanged. The flux
ratios (de novo synthesis of xanthophyll-pool of car-
otene substrate) in mature leaves were about 0.5 (Fig.
1), implying that half the a-C and b-C pool turned over
in the process. In young leaves, the flux ratio in the
a-branch approached 2, compared with a flux ratio of
1 in the b-branch (Fig. 2).

Although flux regulation of de novo xanthophyll
synthesis within the a- and b-branches was without
impact on carotenoid pools during initial stages of
shade-to-sun acclimation, these relationships diverged
markedly in the long term. In mature leaves, the L pool
nearly doubled in the first 10 d, and about half of
this could be attributed to a decrease in a-C. The
b-xanthophylls also increased, but in contrast, this was
accompanied by a stoichiometric increase of the b-C
pool. Successive sun exposures followed by prolonged
shade also initiated extensive de novo synthesis of
xanthophylls, with relationships to substrate pools
similar to those during long-term sun acclimation
(compare Figs. 4 and 5). Clearly, long-term regulation
of the flux through the a-branch differs markedly from
that in the b-branch. These long-term changes in
carotenoid pools led to an inversion of the a-C/b-C
ratio from about 2 in the shade to 0.5 in the sun (Fig. 8).

Substrate-product relationships in the a- and
b-branches of the carotenoid pathway during long-
term shade acclimation were especially dynamic in
young sun leaves and raise unresolved questions about
degradation of L and V. The large transient decline in
the L pool size that preceded the increases in both Lx
and a-C in young leaves did not occur in mature leaves
(Fig. 3). No simple stoichiometric relationships were
evident, but the increase in a-C with time in young
leaves clearly accounts for the high a-C/b-C character-
istic of shade leaves (Thayer and Björkman, 1990).

Evidently, the activities of b,«- and b,b-cyclase, which
could determine overall flux from all-trans-lycopene to
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a-C or b-C, were not differentially regulated during de
novo synthesis or degradation of carotenoids of either
branch. Changes in total pools of a-C branch and b-C
branch pigments were similar in most experiments,
with ratios close to 1 (Table IV). Understanding these
regulatory processes requires better characterization of
biosynthetic enzymes, identification of potential signals,
and further knowledge of flux coordination through the
a- and b-branches of carotenoid biosynthesis.

Possible Functional Relationships between the Lx and V

Cycles and Physiological Implications

There is little doubt that L has essential functions in
environments of excess light. It has been proposed that
L might augment photoprotection by the b-C pool in
Chlamydomonas reinhardtii (Trebst and Depka, 1997)
and Arabidopsis (Davison et al., 2002) under high-
light stress. Large pools of L may ensure immediate
photoprotection in LHCII complexes by serving as a
primary biophysical quencher substituting to some
extent for the roles ascribed to Z (Ruban et al., 2007).
Lutein-deficient mutants of Arabidopsis showed some
alterations in Lhcb structure and photosynthetic func-
tion (Pogson et al., 1996, 1998; Lokstein et al., 2002;
Dall’Osto et al., 2006), and growth and Fv/Fm were
reduced under light stress (Kalituho et al., 2007). Also,
lack of a- and b-xanthophylls rendered various double
mutants in Arabidopsis and C. reinhardtii very suscep-
tible to light stress and impaired growth (Niyogi et al.,
1997, 2001).

The best understood function of the V cycle is its
relationship to photoprotection and PSII efficiency.
The DPS of the V cycle has been viewed as an indicator
of NPQ capacity (Demmig-Adams and Adams, 1992),
and it is established now that DPS can correlate with
both rapidly reversible and sustained NPQ compo-
nents (Demmig-Adams and Adams, 2006). Our mea-
surements of PSII efficiency and DPS after 30 min of
dark adaptation do not reveal the more dynamic
energy-dependent (qE) component of NPQ. However,
if the efficiency of PSII as measured under our condi-
tions was directly and principally dominated by DPS
of the V cycle, Fv/Fm should have shown the same
proportional change in response to changes in DPS,
independent of the light treatments or age of the leaves
throughout these experiments. This was clearly not the
case. Even though decreasing Fv/Fm always correlated
linearly with increasing DPS in avocado leaves, the
magnitude of change in either parameter varied be-
tween experiments. The steeper correlation during the
first diel on transfer from shade to sun (Fig. 7A) than in
subsequent diels as sun acclimation proceeded was not
unexpected, because the initially small pools of V cycle
pigments presumably offered less photoprotection.
Shade leaves presumably also had lower PSII reaction
center repair capacity (Chow et al., 2005) during the first
diel sun exposure, which could have contributed to
stronger photoinactivation and to the much steeper
decline in Fv/Fm during the first diel (Fig. 7A). The

enlarged V cycle pigment pools as sun acclimation
proceeded (Fig. 6) were associated with less decline in
Fv/Fm at the same DPS (Fig. 7A), presumably because
larger amounts of A+Z confer more effective photo-
protection. Additional investigations of changes in fluo-
rescence yields that reflect the operational state of the
photosynthetic electron transfer chain in real time dur-
ing light exposure in relation to DPS are needed to
elucidate to what extent and which components of
photoprotection/photochemistry and DPS are corre-
lated in varying light environments.

The lower slope of the Fv/Fm versus DPS relation-
ship during the first diel of sun exposure compared
with that during the slow recovery of PSII efficiency
during 44 d in the shade (Fig. 7B) may be due to the
slowly reversible conversion of L to Lx. It has been
proposed that photoconverted L “locks in” photopro-
tective energy dissipation in the shade (Matsubara
et al., 2005), which could lead to stronger reduction in
Fv/Fm at lower values of DPS. Another possibility is
sustained photoinactivation of PSII reaction centers
(Matsubara and Chow, 2004) because of limited repair
capacity in the shade.

In addition to the putative protective function of
photoconverted L in photoprotection, recent studies
with Inga species suggested that the accumulation of
Lx in the shade in long-lived inner canopy leaves of
trees may enhance light-harvesting efficiency. In vitro
experiments with thylakoid preparations and recon-
stitution experiments with recombinant Lhcbs, as well
as analysis of fast chlorophyll fluorescence transients
in vivo, indicated that less energy is lost by thermal
dissipation in the presence of high Lx, possibly facil-
itating energy transfer between chlorophyll molecules
(Matsubara et al., 2007, 2008). The opposing correla-
tions of Lx and A+Z concentration with PSII efficiency in
avocado leaves (Fig. 7, C andD) suggest a similar role for
Lx in promoting high PSII efficiency in this species.
However, our hitherto unreported transitory increase in
Lx in young shade leaves transferred to sunlight is
counterintuitive to the proposed roles for Lx as an
enhancer of light harvesting in deep shade and a repos-
itory for L accumulation upon high light exposure
(Garcı́a-Plazaola et al., 2007). Evidently, the relationship
between Fv/Fm and DPS is not straightforward in avo-
cado leaves, and it is clear that PSII efficiency, as mea-
sured here, is determined by a combination of many
factors. Further investigation of these and other possi-
bilities requires detailed kinetic analyses of the decline in
Fv/Fm in the light and recovery of PSII efficiency during
dark adaptation, as well as of the kinetics of damage to
and repair of PSII reaction centers during acclimation.

CONCLUSION

This study revealed an intriguing array of relation-
ships among the pigments of the a- and b-branches of
the carotenoid pathways during short-term sun expo-
sure and long-term shade and sun acclimation in
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shade-grown avocado leaves that are summarized
schematically and semiquantitatively in Figure 8.
These observations place the relationship of the Lx
and V cycles in a new context, suggesting that L may
initially confer protection from photooxidation and
that subsequent de novo synthesis of L and A+Z
may dominate the presumed functional roles of these
pigments in the slowly and rapidly reversible down-
regulation of light-harvesting efficiency in the anten-
nae of photosystems. It becomes clear that there are
significant ontogenetic differences in the light accli-
mation response, exemplified by the initial sun accli-
mation response of young leaves associated with
reverse Lx cycle activity. In spite of large variations
in the a-C and b-C branch carotenoid and xanthophyll
pigments, the balance between fluxes through the a-C
and b-C branches was equal irrespective of the accli-
mation processes. Understanding the extent to which
these interactions of the two xanthophyll cycles sus-
tain the performance of long-lived avocado leaves in
the shade and their contribution to overall canopy
photosynthesis, growth, and yield in avocado and
other species becomes an exciting direction for future
investigation.

MATERIALS AND METHODS

Plant Material and Growth Conditions

Avocado (Persea americana ‘Edranol’) seedlings (60 cm), purchased from

Vallance’s Nursery in September 2005, were kept in a deeply shaded part of a

temperature-controlled (28�C day/18�C night) glasshouse in Canberra. Max-

imum PPFDs were 50 to 150 mmol photons m22 s21 at 12 PM. Seedlings were

maintained in their original 8-L containers of potting soil with regular

irrigation and additions of slow-release nutrients until preliminary experi-

ments were conducted in November 2005 (Garcı́a-Plazaola et al., 2007;

Esteban et al., 2008). Plants were then pruned to the main stem in April

2006, and the second and third flushes of new leaves were used in experiments

during periods of cloudless weather throughout November 2006 and January

2007. Midday light environment in the shade enclosure at the time of the

experiments was 30 to 80 and 100 to 150 mmol photons m22 s21 for lower

canopy leaves and upper canopy leaves, respectively. Maximum sunlight in

the unshaded part of the greenhouse was 1,200 to 1,600 mmol photons m22 s21

at 12 PM at the upper canopy level.

Light Response and Acclimation Treatments

Plants (1–1.5 m tall) with suitably displayed leaves (i.e. not subject to self-

shading) and of requisite age and size were selected so that four similar leaves

in each age category were sampled repeatedly by excising leaf discs from the

same plant for pigment and fluorescence analysis throughout the experi-

ments. Biological replication was achieved by repeating experiments on

comparable leaves on different plants at different times but under similar

conditions. Two leaf size categories were used to analyze the influence of age

and developmental stage: mature leaves were fully expanded (18–25 cm

length), whereas young leaves were rapidly expanding.

Short-term responses (1–5 d) of the Lx and V cycle pigments upon transfer

of shade-grown leaves to sun were examined in plants moved to the open

glasshouse for exposure to natural sunlight on cloudless days. In experiment

1, the plant was transferred to sun at 8 AM and returned to shade at 3 PM after

7 h of exposure to light intensities that increased from 80 to 1,400 mmol

photons m22 s21. Mature leaves were sampled frequently before, during, and

after these transfers and at 6 AM the next day. Comparable mature leaves on

another plant that remained in the shade enclosure were sampled throughout

the day as controls. In experiment 2, young leaves in early (y1; 6–7 cm) and

later (y2; 11–13 cm) stages of expansion were sampled before the plant was

transferred to the open greenhouse at 6 AM (,10 mmol photons m22 s21), after

8 h of sun exposure directly before plants were returned to the shade enclosure

at 2 PM, and at 6 AM the next morning (6-2-6 protocol). In the following shade

growth period, samples were taken at 6 AM on days 2 and 5. Mature leaves

were also sampled as additional controls.

Two types of long-term shade acclimation experiments were performed to

examine the truncated nature of the Lx cycle in avocado leaves. In experiment

3, well displayed young (y2, as above) andmature leaves of the current growth

flush on a plant that had been acclimated to sunlight for 30 d were analyzed

during the 6-2-6 diel on day 0 to establish a baseline for comparison with other

experiments and then at 6 AM at intervals during the following 43 d in the

shade. This experiment simulated the shading of outer canopy leaves that

could be expected in rapidly growing shoots of avocado trees in the field. In

experiment 4, a shade-grown plant was transferred to sun at 6 AM and

returned to shade at 2 PM on days 0, 2, and 9. Samples were taken frommature

leaves according to the 6-2-6 protocol during these transfers. Subsequently,

unperturbed shade acclimation was followed in samples taken at 6 AM at

intervals until day 44. This experiment may reasonably reflect natural events

that temporarily disturb inner canopy light exposures.

Long-term sun acclimation was examined to compare the engagement of the

Lx and V cycles in young and mature leaves. This situation may arise when the

outer canopy structure is permanently altered by natural factors (e.g. wind

damage) or management procedures (e.g. canopy pruning to reduce water use).

In experiment 5, a shade-grown plant was transferred to sunlight for 39 d. Leaf

samples were collected using the 6-2-6 protocol on days 0, 9, 19, and 38.

Pigment and Chlorophyll Fluorescence Analyses

Leaf discs (1 cm in diameter) were cut out from tip to base of attached

leaves for pigment and fluorescence analyses. Chlorophyll fluorescence

parameters were determined on leaf discs after 30 min of dark adaptation

using the PEA fluorometer (Hansatech) according to the manufacturer’s

protocol. Maximum efficiency of PSII was derived as Fv/Fm = (Fm 2 Fo)/Fm

(van Kooten and Snel, 1990), where Fm is the maximum dark-adapted

fluorescence, Fo is the intrinsic fluorescence in the dark, and Fv is the variable

fluorescence. Leaf discs were frozen immediately after fluorescence measure-

ments in liquid nitrogen and stored at 280�C for pigment analysis by HPLC

(modified after Pogson et al., 1996). Pigments were extracted in 0.5 mL of

acetone to ethyl acetate (60:40, v/v) in a TissueLyser (Qiagen; www.qiagen.

com) for 2 min at 30 Hz and then separated into the ethyl acetate phase by

addition of 0.4 mL of water and centrifugation at 16,000g at 20�C for 5 min in a

microcentrifuge. The pigment-containing ethyl acetate phase was centrifuged

again in a new microfuge tube to precipitate any residual particulate matter.

Then, 20 mL of the ethyl acetate phase was injected onto a Waters Spherisorb

5 mm ODS2 column for reverse-phase HPLC (Agilent Technologies HP1100

series). Pigments were separated using a linear gradient decreasing solvent A

(acetonitrile:water:triethylamine, 90:10:0.1, v/v) from 100% to 33% (v/v)

while increasing solvent B (ethyl acetate) from 0% to 67% (v/v) over 31 min,

followed by a 4-min elution with 100% (v/v) solvent B at a flow rate of 1 mL

min21. Pigments were identified by retention times and spectra, and concen-

tration on a chlorophyll a+b basis was calculated using peak area conver-

sion factors obtained with pure pigment standards from A440 by Dr. Shizue

Matsubara (ICG-III: Phytosphäre, Forschungszentrum Jülich). ANOVA and the

Tukey multiple comparison test were applied for statistical analyses.
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