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Genomic resources have significantly impacted
plant biology research in recent years. Cell biology
has been further enabled by an ongoing revolution in
visualization technologies. Using fluorescent proteins
(FPs), we now have unprecedented views of cellular
architecture, and we can study real-time dynamics of
cell structure, function, and protein localization. To
date, these technologies have been most widely used
in Arabidopsis (Arabidopsis thaliana); however, the
grasses provide a unique opportunity to study the
underlying mechanisms and inter-related controls of
cell growth, morphogenesis, and physiology in lead-
ing crop models.
Here, we present a resource that leverages the

emerging maize (Zea mays) genome sequence to de-
velop tools to study protein structure and function in a
cellular context. Traditionally, such studies relied on
fixed tissue or FP fusions driven by constitutive pro-
moters, which can lead to significant artifacts. The
maize genome sequence now provides access to reg-
ulatory regions that can be used to drive native ex-
pression. We have developed streamlined methods to
generate maize FP-tagged lines using these regulatory
elements, allowing analysis of tissue-specific expres-
sion and localized function. Identification of diverse
proteins that function in specific subcellular compart-
ments will provide the tools for understanding basic
developmental, biochemical, and physiological pro-
cesses in maize, with direct application potential for
crop improvement.

METHODOLOGY

We developed a protocol to generate fusion proteins
with yellow (YFP), cyan (CFP), or red (RFP) color
variants of FPs driven by native regulatory elements,
based on our previous work in Arabidopsis (Tian et al.,
2004). In brief, the method uses triple template PCR to
generate products of the full genomic sequence with
the FP insert, which is flanked by linker peptides to
minimize folding interference between the FP and
tagged protein. The product is cloned using the Gate-
way system (Invitrogen) into the donor vector,
pDONR207. The tagged gene is transferred into binary
destination vectors and ultimately transformed into
maize. Full details of the protocols are available at
http://maize.jcvi.org/cellgenomics/protocol/maizeTT
protocolGFP_111405.shtml.

Candidate genes were selected for tagging based on
several criteria, including, as first priority, the avail-
ability of full genomic sequence plus regulatory regions
that included 3 kb upstream and 1 kb downstream of
the coding region. A size limit of 8 to 9 kb for the full
genomic region with the FP insertion is imposed to
ensure good cloning efficiency. Given these size con-
straints, we next prioritized genes that encoded pro-
teins with robust predicted functions. These decisions
were based on homology to otherwell-studied proteins,
known localizations to specific compartments, and/or
corroborating antibody or expression data. Genes with
available mutations were also given high priority so as
to provide ameans of functional complementation. Our
final criterion was to include candidates that would
label the full range of cellular compartments.

Approximately 25% of genes tagged were derived
from specific requests that met our designated tagging
criteria from researchers in the maize community. The
remaining 75% of genes were selected initially by
searching approximately 2,500 TIGR (The Institute for
Genomic Research) Release 5 AZMs (Assembled Zea
mays; Chan et al., 2006) that were .5 kb and 300 TIGR
maize bacterial artificial chromosome sequences that
were available at the start of the research project. Fgenesh
gene predictions (Salamov and Solovyev, 2000) and ho-
mology to ESTs and protein databases were generated
and subcellular localization predicted using PSORT (pro-
tein sorting tool; Nakai and Kanehisa, 1992). Candidate
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gene sequences were also selected from GenBank, Maize
Assembled Genomic Island sequences (Fu et al., 2005),
ChromDB (Gendler et al., 2007), orMaizeGDB (Lawrence
et al., 2007). Agrobacterium-mediated transformation of
maize was performed at the Iowa State University Plant
Transformation Facility (Frame et al., 2002; Paz et al.,
2006). Plantlets were screened for FP expression and
seeds bulked by crossing plants to the inbred line B73.

DESCRIPTION OF SELECTED TAGGED LINES

Figure 1 depicts a subset of images representative of
the tagged lines generated. The tagged lines mark
most compartments in maize cells for use in diverse
research programs. For example, proteins localized to
the nucleus are ideal as constitutive markers and for
studying chromosome dynamics and developmental
regulation (Fig. 1, A–D). Here we display two nuclear
markers, each serving a unique function. Histone H1 is
a linker histone that functions in maintaining higher
order chromatin structure and in epigenetic regulation
(Misteli et al., 2000). Ten H1 genes have been identified
in maize (www.Chromdb.org), and we selected
HON110 for tagging. The YFP-tagged protein local-
ized to nuclei in roots, leaves, and inflorescences (Fig.
1, A–C, respectively). We observed punctate subnu-
clear foci representative of heterochromatin (Misteli
et al., 2000). Interestingly, labeling was low in the
central region of meristems, likely reflecting the re-
duced activity and/or cell cycle of these cells (Fig. 1C,
inset).

The second nuclear marker displayed is Meiotic
Recombination11B (MRE11B) tagged with YFP. MRE11
proteins are tools for studying chromosome repair,
due to their interactions with RAD50 and NBS1, which
mediate double-stranded break repair and recombi-
nation (Waterworth et al., 2007). MRE11B-YFP was
observed in maize nuclei, consistent with transient
heterologous expression assays of the NBS1 partner in
dicots (Waterworth et al., 2007). MRE11B-YFP local-
ized strongly in dividing and growing tissues of the
shoot and root tip (data not shown) and expanding
leaf and husk cells (Fig. 1D), consistent with its hy-
pothesized DNA repair function. This tagged protein
will be useful for comparative study of meiotic recom-
bination in the grasses (Lohmiller et al., 2008).

As a marker for the vacuole, we tagged a maize
aquaporin, tonoplast intrinsic protein1 (TIP1; Barrieu
et al., 1998). TIP1-YFP localized to vacuolar membranes
in root, leaf, and inflorescence spikelet primordia (Fig.
1, E–G, respectively; also see F, inset, vacuole-like
structures in an expanding leaf cell, arrowed), as well
as reticulate and perinuclear structures typical of en-
doplasmic reticulum. In general, TIP1-YFP was broadly
expressed. Interestingly, the fusion protein was less
abundant in root epidermal cells, with the exception of
the root hairs (Fig. 1E). This marker will be useful for
studies of vacuole organization and function and in the
response of plants to various stresses.

Peroxin11 (PEX11) was tagged as a marker for
peroxisomes, small organelles that perform a variety
of oxidative cellular functions. PEX11 is targeted to
peroxisomes in Arabidopsis and has been implicated
in peroxisome proliferation (Lingard et al., 2008). The
PEX11-YFP fusion localized to small, highly motile
organelles that resemble peroxisomes in root and leaf
cells (Fig. 1, H and I), including guard cells (Fig. 1I,
inset). This marker will be useful for studies of cellular
oxidative processes and organelle dynamics (a movie
can be seen at http://maize.jcvi.org/cellgenomics/
index.shtml).

FP tags of tubulin (TUB) are essential for studying in
vivo cytoskeletal dynamics and organization. Because
a-TUB1 and b-TUB1 dimerize during polymerization,
we tagged a-TUB1 with YFP (Fig. 1, J–L) and b-TUB1
with CFP or RFP (Fig. 1K, insets) to provide multiple
FP tools for studying microtubule (MT) dynamics and
array formation. All expected MT arrays associated
with cell division were observed in leaf, root, and
inflorescence apices, including preprophase bands
(Fig. 1J), spindles (Fig. 1K), and phragmoplasts. Ad-
ditionally, cortical arrays in YFP-tagged a-TUB1 leaf
cells show typical random orientation (Fig. 1J) during
cell division and more aligned orientation during ex-
pansion, observations that are uniquely possible in the
oriented cells of the grasses. Interestingly, b-TUB1-
tagged MTs were observed only in dividing cells (Fig.
1K, insets), consistentwith prior studies showingb-Tub1
gene expression is downregulated innondividing tissues
(Hussey et al., 1990). Although YFP-tagged a-TUB1 was
highly expressed in roots, its incorporation into MTs
appeared lower than in shoots (Fig. 1J, inset).

Immediately adjacent to the cortical array of MTs
lies the plasma membrane (PM) compartment that
serves as a gate between the cytoplasm and the cell
wall. We marked this compartment by fusing CFP to a
PM intrinsic protein (PIP2-1), an integral membrane
aquaporin that transports water, small uncharged
solutes, and gases across the PM (Chaumont et al.,
2001). PIP2-1-CFP localized to the PM in epidermis
(Fig. 1M) and mesophyll (Fig. 1N), as expected based on
known PIP2 function in other systems. PIPs are gener-
ally regulated by drought stress in dicots (Mahdieh
et al., 2008), suggesting our PIP2-1-CFP line could be
tested as a physiological marker of water transport and
drought responses in maize. We recently published
another marker for PM, YFP-tagged PINFORMED1
that functions as an auxin efflux carrier and will be a
useful reporter of maize auxin responses (Gallavotti
et al., 2008).

a-Expansin1 (EXP1) contributes to cell growth dur-
ing wall extension and stress relaxation (Sampedro
and Cosgrove, 2005). Of the five a-EXP genes identi-
fied in maize (Wu et al., 2001), EXP1 was tagged due to
its reported expression along the growth gradient of a
developing maize leaf (Muller et al., 2007). EXP1-YFP
appeared correctly targeted to cell walls (Fig. 1P), as
confirmed in plasmolysis experiments (data not shown).
The fusion protein was also abundant in the cytoplasm
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of root and leaf (Fig. 1, O and P), particularly prior to cell
morphogenesis (data not shown). Inflorescence apices
counterstained with FM4-64 (red) show EXP1-YFP lo-
calized to sites of incipient primordia (Fig. 1Q). Our

observations support the idea that EXP1 function (i.e.
for cell wall loosening) is one of the earliest structural
events in emergence of an organ primordium (Pien et al.,
2001).

Figure 1. Sample images of markers for cell compartments. Nuclear markers include Histone H1, HON110 in root tip (A), leaf
(B), and inflorescence apex (C) and MRE11B in expanding husk (D). Vacuole membrane marker: TIP1 in root (E), leaf (F), and
shoot apex (G). Peroxisome marker: PEX11 in root (H) and leaf (I). Tubulin cytoskeleton markers: a-TUB1 in leaf (J–L) and root (J,
inset) and b-TUB1 in spindles (K, insets). Plasma membrane marker: PIP2-1 in leaf epidermis (M) and mesophyll (N). Cell wall
marker: EXP1 in root (O), leaf (P), and inflorescence apex (Q). Vesicle trafficking markers: ROP7 in root (R) and RAB2A1 in leaf
(S). Actin cytoskeleton marker: FIM in leaf (T) and root (T, inset). Mitochondrial marker: HSP22 in root (U), leaf (V), and
inflorescence apex (V, inset). Plastid marker: LOX10 in leaf (Wand X). (See text for gene abbreviations andWeb site for additional
images; http://maize.jcvi.org/cellgenomics/index.shtml.) The images are confocal (A–C, E–L, R–T, W, and X) or wide-field
micrographs. Red color represents tissues counter-stained with FM4-64 (A–C, E, H, P, and Q), RFP expression (K, inset), or
chlorophyll autofluorescence (F and X). Blue color represents cell wall autofluorescence (D, O, U, and V) or CFP expression (K
[inset], M, and N). Scale bars = 20 mm, except B inset, X = 5 mm; K = 8 mm; C, F, Q, and V inset = 100 mm.
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Vesicle trafficking is a highly coordinated system of
intracompartmental transport in eukaryotes, mediated
by small GTPases in the Ras superfamily. ROPs and
RABs are two subfamilies that have diverged exten-
sively in plants (Christensen et al., 2003; Zhang et al.,
2007) and may have acquired new plant-specific func-
tions despite highly conserved protein structure across
eukaryotes (Zhang et al., 2007). Maize ROP7 was
tagged with YFP and localized only to root cells in
punctate structures as well as being dispersed in the
cytoplasm (Fig. 1R). RAB2A1, tagged with YFP, local-
ized across cellular compartments in young dividing
and expanding leaf and root cells (Fig. 1S). It is
interesting to note that RAB2A1-YFP was restricted
to subsidiary cells in mature leaf (data not shown),
similar to the down-regulation of expression at the leaf
tip observed in maize and sorghum (Sorghum bicolor;
Zhang et al., 2006).

The actin cytoskeleton is a dynamic structure asso-
ciated with cell division, expansion, organelle move-
ment, and maintenance of subcellular compartments.
Study of actin in plant cells has been largely limited to
fixed tissue, possibly due to the failure of actin fila-
ment assembly when subunits are tagged. However,
the actin-binding protein fimbrin permits in vivo
observation of actin cytoskeleton through its direct
binding to intact microfilaments (Wang et al., 2008).
Through bioinformatic identification of a maize ho-
molog to Arabidopsis fimbrin, we fused a double YFP
to the actin-binding domain 2 of maize fimbrin and
present here initial observations of T0 seedlings,
showing localization to a filamentous network in leaf
and root cells (Fig. 1T and inset).

Mitochondrial markers are important tools to study
organelle morphology, development, and function.
Heat shock proteins (HSPs) are useful because they
can be either conditional or constitutive (Shemetov
et al., 2008), thus providing experimental control of
expression. We tagged HSP22, a molecular chaperone,
with YFP and the protein was constitutively localized
in mitochondria in maize leaf, root, and inflorescence
apices (Fig. 1, U and V). Expression of HSP18, also
tagged with YFP, was induced by thermal stress (data
not shown). Thus, these tagged proteins will be useful
as conditional or constitutive mitochondrial markers
for developmental study.

Lipoxygenase10 (LOX10) is thought to function in
synthesis of oxylipins, including jasmonic acid,
which functions in defense responses as well as in
plant development (Nemchenko et al., 2006). LOX10-
YFP localized to organelles that lacked standard
chlorophyll autofluorescence (Fig. 1, W and X) and
were smaller than mature chloroplasts. These organ-
elles may be leucoplasts or other intermediary plas-
tids, an idea supported by the observation of
stromule-like structures (Fig. 1X, inset) that are char-
acteristic of plastids (Kohler et al., 1997). This marker
will be useful to study plastid biogenesis and to
understand compartmentalization of the oxylipin
pathways.

MATERIAL AVAILABILITY, UTILITY IN RESEARCH,
AND INSIGHTS INTO FUTURE DEVELOPMENT

Currently, approximately 40 proteins have been
tagged with FP and T2 generation seeds are available
by request through our Web site at http://maize.jcvi.
org/tigr-scripts/maize/cellgenomics/seed_request.pl.
We aim to continue tagging up to 100 proteins for
compartments not yet labeled and for proteins devel-
opmentally regulated, physiologically controlled, and
conditionally expressed. We will leverage advances in
live cell imaging techniques and continue to mine the
emerging maize genome sequence for new regulatory
regions and genes of interest. In addition to their value
for cell and developmental studies, these FP-tagged
proteins will be useful for proteomic analysis of pro-
tein complexes and for protein-protein interaction
studies. Our constructs are designed for easy replace-
ment of the FP tag with any other tag, allowing
flexibility in future experiments. We are also develop-
ing additional cloning techniques to increase through-
put. The techniques described here could easily be
applied to other grasses, providing a broad-based cell
biological resource to the plant biology community
and serving to provide new views into protein and
cellular imaging.
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