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Abstract
Osetogenesis Imperfecta (OI) is a heritable disease, which results from an abnormal amount or
structure of Type I collagen. Bisphosphonates, a class of synthetic antiresorptive drugs used in
osteoporosis management, are also used to decrease fracture incidence and improve quality of life
in children with OI. In this study we used the oim mouse to test the hypotheses that pamidronate
treatment during active growth 1. produces larger, stronger, stiffer long bone diaphyses without
altering bone material properties, and 2. negatively impacts longitudinal bone growth. Our results
indicate that femoral cross-sectional moment of inertia in the distal metaphysis tended to increase
with pamidronate treatment and that the treated bones are thicker and structurally stiffer, but shorter
than their control-dose counterpar
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INTRODUCTION
Osteogenesis Imperfecta (OI), a heritable disease resulting from an abnormal amount and/or
structure of Type I collagen, affects 1 in 10,000 to 60,000 people in the United States (Shoenfeld
1975; Byers 1993; Primorac, Rowe et al. 2001). It is the most common hereditary bone disease
(Alman and Frasca 1987), and is characterized by moderately to extremely fragile bones which
may fracture due to little or no trauma (Shoenfeld 1975; Alman and Frasca 1987; Byers
1993; Paterson 1997; Primorac, Rowe et al. 2001). OI is typically classified into four syndromes
(Types I–IV) based on characterizations by Sillence (Sillence, Senn et al. 1979). Although
there is no cure for OI, bisphosphonates (BPs), synthetic antiresorptive therapeutics, are
currently used to decrease fracture incidence and improve quality of life in children with OI
(Landsmeer-Beker, Massa et al. 1997; Wang, Bank et al. 2000; Astrom and Soderhall 2002;
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Lindsay 2002; Rauch, Plotkin et al. 2003). The goal of this study was to gain a better
understanding of the mechanisms by which bisphosphonate treatment benefits OI patients.

BPs are characterized by a P-C-P backbone and categorized based on the chemical nature of
their side groups, which affect chelation and potency. They are not metabolized, do not
accumulate in tissues other than bone, are selectively taken up at bone formation sites, and
inhibit osteoclastic bone resorption (Landman, Hamdy et al. 1995; Lin 1996; Licata 2005).
Consequently, the effects of BPs persist after treatment is stopped. While the mechanisms are
not well understood, BPs containing nitrogen block farnesyl diphosphate synthase in the
mevalonate pathway, preventing prenylation of small GTPases responsible for osteoclast
polarization and formation of the ruffled border (Sato, Grasser et al. 1991; Dunford, Thompson
et al. 2001; Frith and Rogers 2003; Van Beek, Cohen et al. 2003; Rogers 2004).

OI bone tissue is inherently weakened to a degree depending upon the specific genetic defect.
However, the strength of any structure is a function of its geometry as well as its material and
this paper considers the general hypothesis that bisphosphonates compensate for the fragility
of OI bone tissue by improving structural strength. Inhibiting resorption during growth may
alter bone geometry to compensate for the weakness of the OI bone material. Briefly stated,
moving the structural material further from the center of the bone cross-section increases its
effectiveness in resisting bending and torsional loads (Bagi, Hanson et al. 2006). As a bone
such as the femur grows longitudinally, resorptive modeling removes metaphyseal periosteal
bone, creating and extending the diaphysis. Simultaneously, bone is added to the periosteal
surfaces of the diaphysis, and resorbed on its endosteal surfaces, enlarging its diameter and
cross-sectional moment of inertia. These processes increase bone structural strength while
adding marrow volume and maintaining an efficient bone mass.

Based on these concepts, we tested whether using a bisphosphonate (pamidronate) in a growing
oim mouse would increase the femoral structural strength and stiffness without altering the
bone tissue material properties. We further examined whether pamidronate treatment during a
period of active growth in the oim mouse reduced longitudinal bone growth.

MATERIALS & METHODS
Heterozygous B6C3Fe-a/a-Colla2+/oim hybrid breeder mouse pairs were obtained from
Jackson Laboratories (Bar Harbor, ME). Mice were housed under constant temperature and
humidity (21°C and 55%, respectively), with a 14:10 hour light:dark cycle, and fed Purina
Laboratory Chow 5001 (Purina Mills, St. Louis, MO) and water ad libitum. Toe snips were
taken at 1 week of age for identification and DNA genotyping (Pomp and Murray 1991). Based
on genotype mice were assigned to wildtype (+/+), heterozygous (+/oim), or homozygous
(oim/oim) experimental groups, and at four weeks of age randomly assigned to one of three
treatment subgroups: a control-dose of phosphate buffered saline (PBS), a low dose of
pamidronate dissolved in PBS (1.25 mg/kg/mo), or a high dose of pamidronate dissolved in
PBS (2.5 mg/kg/mo). Weekly treatment doses were administered intraperitoneally for 8 weeks;
at 12 weeks of age the mice were weighed (Table 1) and sacrificed via carbon dioxide
asphyxiation. All animal procedures were approved by the U.C. Davis Institutional Animal
Care and Use Committee. The desired number of animals for each subgroup (N=10) was
compromised due to bones with evident fracture callus formation (primarily in the oim/oim
animals) which were excluded from the study. In addition, due to the fragility of the bones,
some were accidentally fractured during harvest or handling prior to biomechanical testing.
To compensate breeding was continued producing more pups of all genotypes. Additional pups
were put in their respective gender and genotype subgroups accounting for the unequal
numbers.
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Cross-Sectional Geometry
To quantify changes in bone shape and size due to pamidronate treatment, the right femur of
each mouse was harvested. Those with evident fracture callus formation were excluded from
the study. The remaining fermurs were fixed in 70% ethanol for 2 days, and stained en bloc
using basic fuchsin (Burr and Hooser 1995). The bones were embedded in methyl methacrylate
using benzoyl peroxide as a catalyst, and sectioned using a diamond wire saw (Delaware
Diamond Knives, Wilmington, DE). Two transverse sections 100 μm thick were cut, one at
50% of the total length (midshaft), and the other at 30% of the total length from the distal end
(distal metaphysis). The mounted sections were digitized at 25X magnification using an
Axiocam camera (Carl Zeiss Microscopy, Germany). ImageTool software
(http://ddsdx.uthscsa.edu/dig/itdesc.html, University of Texas Health Sciences Center, San
Antonio, TX) was used to measure the periosteal (p) and endosteal (e) anterior-posterior (AP)
and medio-lateral (ML) diameters (DAPp, DMLp, DAPe, DMLe). These measurements were used
to calculate the midshaft and distal metaphyseal cross-sectional moment of inertia (CSMI)
assuming an elliptical cross-section (Lopez and Markel 2000):

Photoshop CS 8.0 (Adobe Systems, Inc., San Jose, CA) was used to remove portions of the
image that did not contain bone. The images were then converted to grayscale and thresholded
in ImageTool to determine the femoral cortical area (Ct.Ar).

An Olympus BH-2 microscope and a calibrated Merz grid were used to make anterior,
posterior, medial, and lateral cortical thickness (Ct.Th) measurements on both the distal
metaphysis and midshaft sections. One measurement was taken in each quadrant (anterior,
posterior, medial, and lateral) of each section. The four quadrant measurements were averaged
to produce an estimate of the mean femoral cortical thickness for the section.

Structural Properties
The left femurs were dissected free of soft tissue, wrapped in saline-soaked gauze, and stored
in a −20°C freezer until use. Femurs were thawed and those with evident fracture callus
formation were excluded from the study. Pamidronate’s effect on longitudinal growth was
assessed by measuring the overall femoral length, from the top of the femoral head to the bottom
of the medial condyle, using a Mitutoyo Digimatic caliper (Mitutoyo America Corporation,
Aurora, IL) accurate to ± 0.02 mm.

Structural stiffness and strength were tested in 3-point bending using a servohydraulic dynamic
testing machine (Instron model 8511.20, Canton, MA) fitted with a Sensotec fatigue-rated
universal load cell (Honeywell, Columbus, OH) and controlled by a LabView (National
Instruments, Austin, TX) computer program set to stop at failure. The load cell range was 0–
500 ± 0.1 Newtons. The test span was fixed at 4mm, and each femur was loaded at a rate of 1
mm/s with the posterior surface in compression. The 3-point bending test was conducted in
displacement-control with the load point at the mid-diaphysis and the supports just before the
metaphyseal flare on each end of the bone. Data were analyzed by a Matlab (The MathWorks,
Inc., Natick, MA) program to calculate femoral structural stiffness, and structural strength
(ultimate load),

Material Properties
The CSMI and 3-point bending test data from contralateral right and left femurs in each mouse
were used to calculate the bone tissue failure stress (σ), Young’s modulus (E), and yield and
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failure tissue strains using beam equations (Lopez and Markel 2000). Brittleness was defined
as 100 × yield strain/failure strain (McCarthy, Raggio et al. 2002).

Statistical Analysis
The male and female data were analyzed separately. The cross-sectional geometry, length,
structural and material properties were analyzed by least squares analysis of variance
procedures for unequal subclass numbers, using PROC GLM of SAS (version 8.0 2001) with
fixed effects of genotype, dose, and genotype-by-dose interaction. StatView was used to
examine the effect of genotype and pamidronate treatment on accidental fracture of the femurs.
A two factor ANOVA and Fisher Protected Least Significant Difference was used for post-
hoc comparisons. Significance was defined as p<0.05, and a tendency toward significance was
defined as p<0.1.

RESULTS
Cross-Sectional Geometry

At the femoral midshaft, male and female oim/oim femurs were significantly smaller than +/
+ and in some cases +/oim femurs in terms of DAPp, DMLp, CSMI, and Ct.Ar. In contrast, Ct.Th
was not affected by genotype in males, but in females oim/oim bones were thinner than +/
oim and +/+ bones. Pamidronate treatment, however, had no effect on midshaft DAPp, DMLp,
CSMI, Ct.Th or Ct.Ar in males or females (Tables 2 and 3).

In the femoral distal metaphysis, male and female oim/oim femurs were again smaller than +/
+ and in some cases +/oim femurs for DAPp, DMLp, CSMI, Ct.Th, and Ct.Ar. Pamidronate
treatment had no effect on distal metaphysis DAPp in males or females, but increased DMLp in
females (p= 0.0125). In females (but not males) there was a tendency toward significant
increases in CSMI in the distal metaphysis with pamidronate treatment (p=0.0589). In both
males and females Ct.Th increased with pamidronate treatment in the distal metaphysis (p
=0.0537 and p = 0.0527, respectively). Pamidronate increased the Ct.Ar in females (but not
males) in the distal metaphysis (p0.0448).

Longitudinal Growth, Structural, and Material Properties
As expected, oim/oim femurs were shorter than their +/+ and +/oim counterparts in males and
females (Tables 2 and 3). Despite decreases observed in the males, pamidronate treatment only
significantly decreased longitudinal growth in the females (p=0.0014).

Male and female oim/oim femurs were less stiff, more brittle, and required less energy to fail
than both +/oim and +/+ femurs (Table 4), and pamidronate significantly increased structural
stiffness in the males (p=0.0354) specifically the low dose of pamidronate increased structural
stiffness compared to control dose (p=0.0160) as did the high dose, although not significantly
in the present study ( p=0.0581). Although not significant, a similar trend was seen for females
(p = 0.1383). The ultimate load and work-to-failure were not affected by pamidronate treatment
in either males or females.

With respect to femoral material properties, male and female oim/oim bone tissue had higher
modulus and brittleness values than +/+ and +/oim tissue. Pamidronate treatment did not affect
any of these material properties in either gender (Table 4).

Preparation of specimens for mechanical testing was difficult due to the fragility of the bones
and many fractured accidentally. While problematic, it also provided an alternative means to
test the effect of pamidronate treatment on the fragility of bones having the OI phenotype. That
is, the percentage of femurs that accidentally fractured serves as a measure of structural
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weakness. Using ANOVA to examine the effects of genotype (+/+, +/oim, and oim/oim) and
pamidronate treatment (control, low, and high doses) on the fraction of specimens that
accidentally fractured during preparation showed that surprisingly genotype did not affect
accidental fracture incidence (p > 0.7). However, pamidronate treatment significantly reduced
the incidence of accidental fractures: 60.6% for control-dose vs. 25.8% (p = 0.031) and 27.0%
(p = 0.022) for low and high doses, respectively.

DISCUSSION
During long bone growth, metaphyseal modeling involves resorption on periosteal
metaphyseal surfaces to form the slender diaphysis. We hypothesized that pamidronate
treatment during growth would result in changes in bone size and shape which would
compensate for the weakened bone material associated with OI. These changes in size and
shape can be attributed to inhibition of metahpyseal periosteal resorption by pamidronate.

While the findings of the present study support this hypothesis, the limitations to the study
must be mentioned. First and foremost despite starting with adequate and equivalent animal
numbers, decreased survival of oim/oim pups and limited numbers of fracture-free bones
reduced the study population. Bones with obvious fracture callus were excluded from the study
to avoid biasing the data. In addition, some bones were damaged or fractured during harvesting
or preparation for biomechanical testing and they were excluded from the study. The number
of right femurs used for geometrical property analysis was decreased due to bad embedding,
wire-saw malfunction and operator error. In addition use of contralateral femurs may have
compromised accuracy, particularly in the oim/oim animals. However, gross morphological
differences in the right and left femurs within any genotype group were not noted during the
course of the study, and use of the right femurs for cross-sectional measurements allowed
examination of the left femur fracture surfaces. The elliptical approximation used for cross-
sectional area estimates represents another limitation of this study since bone cross-sections
are not perfectly elliptical. Nevertheless the elliptical approximation is commonly used to
calculate CSMI in bone studies and was applied uniformly to all groups in the present study.
Furthermore, although pamidronate is a nitrogen-containing bisphosphonate known to inhibit
osteoclastic resorption in bone, this study did not examine the effect of the therapeutic on
osteoclasts specifically. Therefore, we can only infer that changes in bone size and shape are
due to the antiresorptive effects of pamidronate.

In this study, males and females were analyzed separately due to gender differences in dose-
response. Lin et al. found that in growing rats bone uptake of alendronate was 30–40% less in
females than in males reflecting a gender-based difference in bone-uptake of the pamidronate.

As noted in the results, the cross-sectional geometry variables in females regardless of genotype
or pamidronate dose were consistently smaller than males, with the exception of Ct.Th in the
distal metaphysis. This may reflect sex steroid effects on bone modeling during growth.
Throughout life, subperiosteal apposition is greater in human males than in females, and the
periosteal bone surface responds more to testosterone while the endosteal bone surface
responds more to estrogen (Garn 1970). With respect to cortical thickness, during puberty the
medullary cavity width in human females decreases sharply, presumably due to endosteal bone
apposition, while in males there is an increase, due to bone resorption (Garn 1970; Martin
2002). These gender differences in bone apposition and resorption may be related to future
calcium demands in females during pregnancy (Syed and Khosla 2005; Sims, Brennan et al.
2006). The fact that the difference was only seen in the distal metaphysis presumably reflects
the ability of this region to adapt without compromising the integrity of the overall bone
structure.
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As expected genotype significantly affected almost every property measured in this study. With
respect to differential bisphosphonate response based on genotype, a study by Misof et al.
(Misof, Roschger et al. 2005) demonstrated that alendronate treatment did not significantly
change any of the mechanical properties of oim/oim bone tissue, but did significantly increase
the ultimate load, stiffness, and brittleness in wildtype bone.

Our results show femoral structural stiffness increased with pamidronate treatment but
structural strength did not. Although, the collagen phase is generally associated with strength
whereas the mineral phase is associated with stiffness., the interaction of these two phases is
critical with respect to bone biomechanical properties.. It has been shown that mineral crystals
in oim/oim bone are abnormal in size, shape and orientation (Fratzl, Paris et al. 1996), and that
demineralized oim/oim bone is not significantly different from wildtype bone with respect to
tensile measurements (Miller, Delos et al. 2007). These studies demonstrate the importance of
the interaction between the mineral and organic phases in bone biomechanical properties. In
the present study pamidronate did not significantly impact material properties and therefore
any increase in stiffness can only be attributed to changes in bone geometry.

The lack of significant treatment-related increases in diaphyseal ultimate load in the present
study may reflect the midshaft location of the test and the short treatment period relative to the
duration of diaphyseal growth and development in the mice. The putative mechanism for
diaphyseal cortical changes produced by bisphosphonate treatment involves inhibition of
metaphyseal resorption; thus, treatment effects in the diaphysis depend on how early in the
growth process treatment begins. Treating earlier and for a longer portion of the skeletal growth
period would be expected to result in positive effects in the central diaphysis. This would be
consistent with the observation that children with OI who receive early bisphosphonate
treatment have lower fracture incidence (Lin, Chen et al. 1992; Bembi, Parma et al. 1997;
Glorieux, Bishop et al. 1998; Plotkin, Rauch et al. 2000; Chevrel and Meunier 2001; Astrom
and Soderhall 2002). Our data are also consistent with the results of Rauch et al. (Rauch,
Cornibert et al. 2007 who observed increases in bone mass and density in the radial distal
metahpysis as compared to the diaphysis in children given pamidronate. The lack of
pamidronate-related increases in the midshaft cross-section may explain why the oim/oim bone
was not fully restored to untreated control.

Our data indicate that bisphosphonate treatment had no significant effect on the intrinsic
material properties (tissue strength, Young’s modulus, and brittleness) of OI bone. However,
the increased stiffness and thickness in the metaphysis, and the trend toward an increase in
structural strength (especially in females) in pamidronate-treated bones relative to untreated
bones, coupled with the observation of fewer bone breaks in femurs extracted from pamidronate
treated mice, indicate that the changes in structural properties in pamidronate-treated bones
are primarily a consequence of the altered bone structure. The increased metaphyseal periosteal
diameters in the pamidronate treated bones further supports the hypothesis that pamidronate
improves bone strength by inhibiting metaphyseal resorptive modeling. The observed changes
in bone structure and geometry appear independent of body weight, since pamidronate had no
effect on weight in either gender or any genotype group.

Inhibition of resorption is also expected to negatively effect longitudinal growth. In our study
femoral length decreased with treatment, indicating a negative effect on the physes. Other
studies [35,36] have shown that there is a persistence of calcified cartilage in the growth plates
of oim mice treated with alendronate, suggesting that aminobisphosphonates may disrupt
cellular processes in the growth plate during endochondral ossification. The decreases in bone
length reported here were smhowever, and as Camacho et al. (Camacho, Raggio et al. 2001)
noted, are outweighed by the beneficial aspects of treatment. The effect on bone length is
presumably dose-dependent since no adverse effects have been documented in clinical studies
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using much smaller, therapeutic doses (Glorieux, Bishop et al. 1998;Plotkin, Rauch et al.
2000).

Our results are consistent with previous studies of the oim mouse model. Homozygous oim
mice are smaller (Camacho, Hou et al. 1999) and have more frequent fractures than their
heterozygous and wildtype littermates (Saban, Zussman et al. 1996). Bones from untreated
homozygous oim mice have thinner cortices, smaller diaphyseal diameters, and reduced CSMI
as compared to wildtype mice (McBride, Shapiro et al. 1998; Camacho, Hou et al. 1999). Our
bone tissue property results are also in keeping with studies showing that untreated
homozygous oim bone is more brittle than wildtype or heterozygous bone (McCarthy, Raggio
et al. 2002; Misof, Roschger et al. 2005). Furthermore, our results support those of Saban et
al. (Saban, Zussman et al. 1996), who demonstrated that heterozygous oim mice, although they
appear phenotypically similar to the wildtype, have intermediate bone morphology and
structural properties compared to wildtype and homozygous oim animals. For the majority of
properties measured, heterozygous animals were not significantly different from wildtype
animals (especially in males). Thus, pamidronate treatment would be expected to have less of
an effect on heterozygous animals, since their bone geometry was minimally altered relative
to wildtype animals. In the present study, pamidronate treatment did not affect intrinsic material
properties in the heterozygous oim mice and due to the minimal effect on bone geometry, they
were not significantly different from wildtypes even after treatment in most cases.

Based on our analysis we conclude that pamidronate treatment alters bone modeling during
femoral growth in the oim mouse model. Presumably these changes are due to inhibition of the
periosteal resorption that occurs on metaphyseal surfaces during femoral growth. Land et al.
(Land, Rauch et al. 2006) similarly noted that OI children treated with pamidronate exhibited
wider metaphyses in the distal femur compared with OI-matched control-dose children. Our
data suggest that pamidronate treatment results in changes to the cross-sectional geometry of
the bones, but not the bone tissue itself. Reducing the resorptive aspects of bone modeling
during skeletal development may result in more robust bone structures that compensate for the
weakened bone tissue resulting from OI genotypes.
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