
Chemical communication and perception strategies between 
plants are highly sophisticated but are only partly understood. 
Among the different interactions, the suppressive interaction of 
a class of chemicals released by one plant through root exudates 
against the neighbouring plants (allelopathy) have been implicated 
in the invasiveness of many exotic weedy species. Phragmites 
australis (common reed) is one of the dominant colonizers of the 
North American wetland marshes and exhibits invasive behavior 
by virtually replacing the entire native vegetation in its niche. 
Recently, by adopting a systematic bioassay driven approach we 
elucidated the role of root derived allelopathy as one of the  
important mechanisms by which P. australis exerts its invasive 
behavior. Additionally, our recent preliminary data indicates the 
involvement of rhizobacterial signaling in the invasive success 
of P. australis. A better understanding of biochemical weaponry  
used by P. australis will aid scientists and technologists in  
addressing the impact of root secretions in invasiveness of weedy 
species and thus promote a more informed environmental  
stewardship.

Introduction

Phragmites australis (Cav.) Trin. ex Steudel, is a perennial grami‑
naceous plant that propagates mainly through rhizomes and,  
at low frequency, by seeds.1 P. australis is widely distributed, ranging 
all over Europe, Asia, Africa, America and Australia, however,  
the origin of the species is unclear though some reports points 
towards Eurasian region. ����������������������������������������    According to archaeological records, it 
has been present in the United States for at least 40,000 years and 
is considered a native species.2 In the United States P. australis is  
found to occur in every state except Arkansas (probably present  

but undocumented) and is predominantly seen along the borders of 
lakes, ponds and rivers.3 The distribution and relative abundance of P. 
australis has increased dramatically over the last 150 years.4 Presently, 
P. australis represents one of the most abundant plant species in the US 
coastal wetlands and is considered as an indicator of wetland disturbance.5  
The invasion and establishment of monocultures of P. australis, 
has resulted in the changed ecosystem processes and associated 
detrimental impacts on native biodiversity and wild life. Some of 
the reported negative impacts of P. australis include the effect on 
the larval and juvenile fish population.6 Effects on the abundance 
in numbers of ecological specialists and rare species such as willet, 
seaside sparrow, and sharp‑tailed sparrow.7 Plant community studies 
in the P. australis dominated ecosystems have shown that Phragmites 
are not conducive to the establishment of other plant species and 
that colonization of disturbed wetland areas by this plant usually 
ensures the development of dense stands.8‑11 The present review 
is mainly focused on the discussion of the various mechanisms by 
which P. australis exerts its invasive behavior to successfully colonize 
and replace the native biodiversity.

Eco-Geographical Factors Influencing P. australis Invasion

Introduction of an invasive species to a new habitat creates more 
competition for space and resources with native species. Traditionally, 
the introduced species are found to be more aggressive because of the 
nonavailability of predators in the new habitat.12 P. australis is now 
considered as one of the major invasive species causing a consider‑
able negative impact on native biodiversity.13 One of the earliest 
reasons attributed for the P. australis invasion includes its ability to 
alter soil properties, reduce salinity, low water level at the surface, 
pronounced micro topographic relief and higher redox potentials.14 
Various reasons, such as human activities that lead to ecological 
disturbances and stresses such as pollution, changes in hydrologic 
regimes and increased soil salinity have also been proposed as causes 
for the rapid expansion of P. australis.15 �����������������������������     It has been reported by both 
univariate and aggregate (multidimensional scaling) analyses of plant 
community composition that Phragmites dominance in developed 
salt marshes resulted in an almost three‑fold decrease in plant species 
richness.16 However, none of these eco-geographical factors �����have 
been experimentally proven conclusively.17 In addition, a number 
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of edaphic factors also have been suggested for the invasive success 
of P. australis, but were not accepted due to a lack of experimental 
evidence.18 Furthermore, population explosion of P. australis is 
often thought of being facilitated by changes in land use patterns, 
urbanization and eutrophication.17 However, the very same factors 
are thought to cause declines of P. australis in Europe.19 While,  
P. australis aggressively colonizes and replaces the native vegetation, 
native plants on the other hand try to make adjustments in their 
anatomical/phenotypic properties to compete against P. australis. 
In an interesting study conducted using a floating peat mat, it 
was found that under the P. australis canopy, Menyanthes trifoliata 
adjusted its phenotypic properties to the conditions of decreased 
light by increasing leaf blade area, decreasing leaf blade thickness 
and elongating petioles.20 In spite of the scanty observations of few 
such anatomical and ecological adaptations by the native species, 
they still fail to out compete P. australis. Despite progress towards 
understanding the ecology of invasive plants and recipient commu‑
nities,21‑23 little headway has been made in identifying the genetic 
and biochemical changes (synthesis of phytotoxins) responsible 
for invasiveness.4,24 Yet this information is required to answer the 
fundamental question of what makes an invasive weed; i.e., plants 
that are unusually persistent, pernicious and optimally adapted to 
agro‑ecosystems.25

Genetic Structure of P. australis Population and Contribution 
to Invasiveness

The most common context in which invasion has been attrib‑
uted to the evolution of an introduced species is the “evolution of 
increased competitive ability” or EICA hypothesis, proposed by 
Blossey and Nötzold.26 They suggested that release from natural 
enemies would result in plants that evolve to allocate less to herbivore 
defense27 and reallocate this freed energy and resources to growth. 
Greater growth would make these new genotypes more competitive 
than their predecessors in the native range. A number of studies have 
shown that invasive genotypes are larger or more reproductive than 
conspecifics in their native range,26,28,29 but conclusive support for 
full causal processes proposed for EICA is rare.30

The early studies involving the analysis of peat core suggested that 
P. australis as not a common member of mixed tidal wetland plant 
communities in North America for at least 3,000 years.31,32 It was 
during the 19th but particularly in the late 20th century, P. australis 
has been observed invading fresh and brackish water wetlands with 
eventual expansion of its range and abundance in North America. 
Moreover, studies during late eighties and early nineties started 
suggesting that the invasiveness of P. australis is attributable to 
introduction of more aggressive European genotypes33‑35 but until 
recently, little information was available to support this hypothesis. 
The existence of introduced European haplotypes along with the 
native North American haplotypes was confirmed recently by more 
detailed genetic studies.4 The leading explanation for the rapid 
expansion of invasive Phragmites populations in North America 
is the observation that they are genetically different from native 
Phragmites.4 Chloroplast DNA (cpDNA) analysis has shown that 
invasive populations possess a single cpDNA haplotype (M) which 
is also widespread in Europe and Asia, while thirteen native North 
American Phragmites haplotypes have now been documented.4 
These data are supported further by nuclear microsatellite DNA 

analysis which show similar patterns in genetic differentiation36 and 
morphological differences which distinguish native and introduced 
Phragmites in North America.37 When grown under the same 
conditions, introduced Phragmites has significantly higher biomass, 
both above and belowground, than native Phragmites38 and similar 
patterns have been observed under field conditions.39,40 Importantly, 
we do not have any concrete evidence that suggests that North 
American populations of Phragmites have evolved to be larger and 
better competitors than populations in Europe and thus meeting no 
predictions of EICA. However, recent work suggests that introduced 
North American populations of Phragmites appear to possess a 
potent “novel biochemical weapon” that allows them to gain advan‑
tage over native North American species.

Novel Weapons Involved in P. australis Invasion?

More recently, the possibility of disrupted coadaptation as a driver 
of invasion has been considered in the context of the “novel weapons 
hypothesis” (NWH).41‑43 This is the idea that some invaders may 
succeed because they possess unique allelopathic, defensive or anti‑
microbial biochemistry to which naïve natives have not adapted. 
Like EICA, there are a number of studies that support this hypoth‑
esis.22,42,44‑47 ��������������������������������������������������      Apart from the edaphic, environmental and genetic 
factors, allelopathic interaction among salt marsh plants has been 
suggested as a possible reason for the zonation in the marsh exhibited 
by P. australis and other species.48 However, the initial experiments 
with P. australis rhizosphere washings did not cause any phytotoxic 
affect on two salt marsh plant species, Distichlis spicata or Scirpus 
robustus. T��������������������  hree triterpenoids (b‑amanacin, taraxerol, taraxeron) and 
a flavone (tricin) have been identified from the aerial portions of 
P. australis.49,50 In addition, various phytochemicals were extracted 
from P. communis (earlier name for P. australis) and tested for their 
anti‑algal effect on different algal species.51 The screen identified 
the allelopathic effect of ethyl‑2‑methylacetoacetate against the algal 
species Chlorella pyrenoidosa and Microcystis aeruginosa.51 However, 
none of these identified chemicals were tested for their allelochemical 
activity on other seed plant species. The root‑derived allelopathy was 
not studied in detail in P. australis;����������������������������������       ���������������������������������     this may be partially because of 
the difficulty involved with isolation and characterization of root 
secretions. In our study we addressed this issue by establishing an ���in 
vitro�����������������   system, whereby P. australis grown ����������������������������    in vitro��������������������    can secrete allelo‑
chemicals into a growth medium.52 Further, the root exudates from 
invasive haplotype of P. australis P38 showed phytotoxic effect on a 
number of plant species including the P. australis associated Spartina 
alterniflora and the model plant Arabidopsis thaliana.52 The phyto‑
toxic effect of the root exudates was mainly by the inhibition of root 
growth initiated by the death of the root starting from the tip to 
central elongation zone.52 The allelopathic effect was subsequently 
established by the ������������������������������    in vivo�����������������������    pot experiments where P. australis exotic 
haplotype completely suppressed the germination and growth of  
A. thaliana.52 However when activated charcoal (which acts as a 
sink and adsorbs all the root secreted allelochemicals) was included, 
no suppression of germination and growth was observed. Further 
the bioassay‑drives fractionation and HPLC, LC‑MS analysis of 
the root exudates revealed that the active ingredient in the root 
exudates as gallic acid (��������������������������������������������   3,4,5‑trihydroxybenzoic acid����������������  ). Further, the 
gallic acid identified in the root exudates of P. australis was highly 
phytotoxic to A. thaliana and other plant species tested. Gallic acid  
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particularly induced rhizotoxicity similar to crude root exudates 
leading to severe inhibition of root growth and disrupting the total 
root architecture. Gallic acid, a phenolic compound found in a 
number of dicot species53,54 (e.g., oak, birch, tea, grape wine and 
sumac), is a main constituent of gallo‑tannins. Though, the gallic 
acid biosynthetic pathway is still debated, it has been shown that 
gallic acid is synthesized directly from its precursor 5‑dehydroshiki‑
mate in the leaves of Rhus typhina.55 Although, the presence of gallic 
acid has been shown in monocots,51,56 its biosynthetic pathway has 
not been deduced in these species. It may be because of the presence 
of an altogether different but specific biosynthetic pathway in mono‑
cots. In addition, the presence of other phenolic acids such as elagic 
acid in P. communis (former name for P. australis) supports this view.51 
Since gallic acid is a phenolic compound, and such compounds are 
known to generate reactive oxygen species (ROS),57 we hypothesized 
that gallic acid might trigger ROS generation that could lead to the 
cell death cascade in the treated roots. As per our hypothesis, when 
we checked for ROS generation, the gallic acid treated Arabidopsis 
Col‑0 seedlings showed a significantly higher basal ROS level on the 
root surface compared to untreated controls. Further the generated 
ROS was able to be quenched by the inclusion of the well known 
ROS quencher the ascorbic acid. Therefore, the phytotoxicity of 
gallic acid exhibited by the treated roots appears to be triggered 
by elevated levels of ROS. These results further prompted us to 
investigate the cellular role of ROS in causing root death. Since the 
gallic acid treatment resulted in the complete collapse of the roots, 
we suspected that its role was in disrupting the microtubule archi‑
tecture. Accordingly, we imaged the gallic acid‑treated roots of  
A. thaliana‑CTD‑PAPK1‑GFP, a transgenic line carrying a specific 
GFP tag for visualizing microtubule architecture. Surprisingly, 
increased microtubule disruption was associated with increased 
ROS levels over a time period. The significant role of ROS in 
bringing about microtubule disruption was strongly supported when 
the plants incubated with the AsA,58 a ROS quencher and anti‑
oxidant, showed very little or no microtubule disruption. The gallic 
acid‑treated plants exhibited a considerable amount of recovery when 
incubated with AsA. ROS has been implicated in the signaling and 
induction of various plant processes starting from pathogenesis59 to 
various other stimuli such as gravity response, abscissic acid, auxin, 
gibberellic acid, UV‑B light and nodulation (nod) factors.60‑62 An 
important question here is how do ROS modify the down stream 
targets leading to phytotoxicity? The response reported in recent 
study52 might be occurring through ROS‑mediated modification of 
the down stream signaling proteins leading to altered gene expression 
and cell death. The ROS generated by phenols have been implicated 
in the microtubule destruction and associated cell death in human 
cancer cell lines.63 A polyphenol, phenol, [(4‑dihydroxyphenyl)‑3‑ 
hydroxy‑(4’‑hydroxyphenyl) 1‑propanone (b‑hydroxy‑DHP)], 
isolated from licorice root (Glycyrrhiza glabra) has been reported  
to inhibit microtubule assembly in human breast and prostate cancer 
cell lines.64 However, to the best of our knowledge, there are no 
reports on a plant rhizo‑secreted toxin damaging the microtubule 
net work of the root cells of other plants. Overall, series of experi‑
mental results reported in our study indicate that P. australis secretes 
a phenolic compound gallic acid into the rhizosphere. The rhizo‑ 
secreted gallic acid bears an allelopathic effect on the tested plants 
both in vitro and in pot experiments under green house conditions.  

Further, the gallic acid inhibited plant growth through ROS‑mediated 
cell death associated with destruction of the root microtubule assembly 
presents a strong case for the existence of root derived allelopathy in  
P. australis.

Are there Other Partners in Crime?

In addition to ecogeographical, genetic and secretion of phyto‑
toxins in to the rhizosphere, one can think of other partners such as 
a rhizosphere and endophytic microorganisms, which might aid in 
its endeavor of conquering vast geographical area. The grass species 
and endophytic fungal and bacterial symbiosis has been studied in 
considerable detail in a number of species.65‑68 However, the involve‑
ment of bacterial endophytes and epiphytic root colonizers which 
are specifically associated with roots of exotic P. australis needs to be 
unraveled. Further, the testing of this hypothesis should answer the 
questions such as whether rhizospheric microbes involved in trig‑
gering the invasive behavior of P. australis. If so are there a differential 
colonization patterns between the invasive and exotic lines? Finally 
does the root associated rhizospheric bacteria synthesize an additional 
phytotoxin to elevate the allelopathic effect of P. australis. The role 
of biochemical and rhizospheric microcosm signaling in between P. 
australis and the native plants has been depicted in Figure 1.

Conclusions

The studies so far on the invasive mechanisms of P. australis 
emphasized on various reasons starting from ecological, edaphic, 
anthropogenic and genetic. Our recent study established that  
P. australis indeed releases a rhizotoxin in to the rhizosphere  
thorough root exudates which kills the plants in its vicinity. We also 
show that the secreted toxin initiates a suicidal cell death cascade 
in the susceptible plants by elevating the ROS levels and eventual 
destruction of microtubules. Our studies, which are still prelimi‑
nary, also indicate the contribution of root associated bacteria for 
P. australis invasion. As to the consequences of root secreted toxin 
activity, we will expand upon our knowledge of direct effects on 
plant roots to analyze the effects of phytotoxin secretions on entire 
native microcosms. Root‑derived biochemical changes coupled with  
microbial diversity cataloguing reported in only a few groups of 
invasive plants will provide vital clues regarding how species become 
invasive and may lead to environmental and economic benefits 
through better management of invasive species.
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Figure 1. (I) Root secreted allelochemical, gallic acid (A) triggers a self destructive pathway in the susceptible plant roots by elevating the basal reactive 
oxygen species (ROS) levels (B) which in turn disrupts the microtubule network (C) leading to complete rhizotoxicity and death [loss of fluorescence (D)] of 
the treated roots (D). (E) shows a control root exhibiting viability. (II) The P. australis exotic haplotypes root associated microorganism response in elevating 
the rhizotoxicity on the susceptible plant roots.
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