
Flowering is one of the most important steps in a plant life cycle. 
Plants utilize light as an informational source to determine the 
timing of flowering. In Arabidopsis, phytochrome A (phyA), phyB 
and cryptochrome2 (cry2) are major photoreceptors that regulate 
flowering. These photoreceptors perceive light stimuli by leaves 
for the regulation of flowering. A leaf is an organ consisting of 
different tissues such as epidermis, mesophyll and vascular bundles. 
In the present study, we examined in which tissue the light signals 
are perceived and how those signals are integrated within a leaf 
to regulate flowering. For this purpose, we established transgenic 
Arabidopsis lines that expressed a phyB‑green fluorescent protein 
(GFP) fusion protein or a cry2‑GFP fusion protein in organ/
tissue‑specific manners. Consequently, phyB was shown to perceive 
light stimuli in mesophyll. By contrast, cry2 functioned only in 
vascular bundles. We further confirmed that both phyB‑GFP and 
cry2‑GFP regulated flowering by altering the expression of a key 
flowering gene, FT, in vascular bundles. In summary, perception 
sites for different spectra of light are spatially separated within 
a leaf and the signals are integrated through the inter‑tissue  
communication.

The timing of flowering is strictly regulated by environmental 
conditions such as light. Two aspects of light, spectral nature and 
photoperiod, dramatically affect flowering. In Arabidopsis, phyB and 
phyA/cry2 are the major photoreceptors mediating these responses. 
Although photoreceptors are expressed in almost all organs,1 partial 
irradiation and grafting analyses have demonstrated that plants 
perceive light signals only in leaves.2‑4 However, roles for different 
tissues in a leaf remained unknown due to a lack of a proper method. 

To answer the question, we established Arabidopsis transgenic lines 
that expressed phyB‑GFP or cry2‑GFP on the respective mutant 
backgrounds. The resultant transgenic lines were examined for their 
flowering phenotype. Consequently, we found that phyB‑GFP in 
mesophyll but not in other tissues regulated flowering.5 By contrast, 
cry2‑GFP functioned only in vascular bundles.6

A strong genetic interaction between phyB and cry2 in the regu‑
lation of flowering is known.7,8 Cry2 regulates the flowering by 
suppressing the inhibitory effect of phyB on flowering. Hence, cry2 
function is observed only in the presence of phyB. Conversely, the 
effect of phyB is exaggerated in the cry2 mutant, because phyB is 
not counteracted by cry2 in its absence. Here, we tested how phyB 
and cry2 in different tissues regulated flowering in the absence of 
the other photoreceptor. For this purpose, we took a physiological 
approach. Phenotype of the phyB‑GFP lines was examined under 
monochromatic red light, in which phyB but not cyr2 is activated. 
As expected, phyB‑GFP in mesophyll but not in vascular bundles 
strongly affected the flowering in this condition (Fig. 1A). We also 
tested the cry2‑GFP function when phyB was not activated. Namely, 
plants were placed under blue light supplemented with strong far‑red 
light. As expected, cry2‑GFP failed to affect the flowering even under 
this condition regardless of where it was expressed (Fig. 1B).

Photoreceptors regulate flowering by altering the expression of a 
key flowering regulator, FT.9,10 Interestingly, the FT gene is expressed 
specifically in vascular bundles.11 Indeed, mesophyll phyB‑GFP 
controlled the expression of FT in vascular bundles. Hence, there 
must be a mechanism by which the light signal is transduced from 
mesophyll to vascular bundles to regulate the FT expression in 
vascular bundles. It should be noted here that FT is not the sole 
factor involved in the light regulation of flowering. Factors such as 
CO, SPA, COP1 and PFT1 are known to link the photoreceptors 
and FT.12‑14 These factors most likely function in leaves. However, 
their function sites at the tissue level remain totally unknown 
except for CO. The biological clock is another class of machinery 
that is tightly related to the light signal transduction pathway.15 
Unfortunately, function sites of the clock components for the regu‑
lation of flowering remain unclear. The future work should reveal 
those sites. Such analyses should finally provide a complete picture 
illustrating a network of the inter‑tissue signaling for the regulation 
of flowering.

The present work urges us to indentify the molecule that  
mediates the inter‑tissue signaling between mesophyll and vascular 
bundles. Potential candidates include phytohormones, microRNA16 
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and peptides.17 Among phytohormones, gibberellin promotes  
flowering.18 However, gibberellin is probably not the answer because 
gibberellin does not alter the FT expression directly. Except gibber‑
ellin, no exogenously added phythromone dramatically affects 
flowering in Arabidopsis. It is known that microRNA such as 
miR172, miR159 and miR156 are involved in the regulation of 
flowering time.19 However, those microRNA’s neither regulate the 
FT expression nor are regulated by light. Since most of microRNA’s 
has not been intensively studied yet, it remains possible that one of 
them may mediate the above inter‑tissue signal. Another potential 
candidate is a peptide. Although not much is known about peptide 
hormones in plants yet, peptides such as PSK,20 xylogen21 and 
CLE22 have been shown to regulate cell growth and differentiation. 
Although none of peptides is known to regulate flowering in plants 
at present, a future work may reveal a novel peptide that mediates the 
inter‑tissue signals for flowering.
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Figure 1. FT expression under phyB or cry2 inactive conditions. Total RNA 
was extracted from the seedlings grown under long‑day condition for 10 
days and subjected to qRT‑PCR for FT expression analysis. Data were nor-
malized to the level of FT mRNA in (A) of the wild type, which was set to 
1 arbitrary unit (a.u.). Mean ± SE (n = 4). WT, wild type. (A) Long‑day red 
light, (16L 8D; 10 mmol m‑2 s‑1). WT, wild type; phyB, phyB mutant; Bpro, 
PHYB promoter‑PHYB‑GFP; PBT56, phyB‑GFP in mesophyll; PBT239, phyB‑GFP 
in vascular bundles.5 (B) Long‑day blue and far‑red light (16L 8D; blue 
light, 3 mmol m‑2 s‑1; far‑red light, 10 mmol m‑2 s‑1). WT, wild type; cry2, 
cry2 mutant; pCRY‑C2G, CRY2 promoter‑CRY2‑GFP; pCAB‑C2G, CAB3 
promoter‑CRY2‑GFP; pSUC‑C2G, SUC2 promoter‑CRY2‑GFP.6
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