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Abstract
Semaphorins are a large family of secreted and membrane‑bound molecules initially 

implicated in the�������������������������������������������        ������������ �� ������������� �� development of the nervous system and in axon guidance. More recently, 
they have been found to regulate cell adhesion and cell motility, angiogenesis, immune 
function and tumor progression. Notably, Semaphorins have been implicated with 
opposite functions in cancer: either as putative tumor suppressors and anti‑angiogenic 
factors, or as mediating tumor angiogenesis, invasion and metastasis�� ���������������.� ��������������� Interestingly, 
Semaphorins may display divergent activities in different cell types.� ��������������������  These multifaceted 
functions may be explained by the involvement of different kinds of semaphorin receptor 
complexes, and by the consequent activation of multiple signaling pathways, in different 
cells or different functional stages. Semaphorin signaling is largely mediated by the 
Plexins. However, semaphorin receptor complexes may also include Neuropilins and 
tyrosine kinases implicated in cancer. In this review, we will focus on major open 
questions concerning the potential role of Semaphorin signals in cancer.

Over twenty different Semaphorin genes are known in vertebrates. They were initially 
discovered as repelling cues for axons, in the wiring of the neural system. However, they 
are currently considered versatile signals regulating �������������������������������������   cell migration, angiogenesis, tissue 
morphogenesis, immune function and cancer.1‑2 Semaphorins have been implicated with 
opposite functions in tumor progression (summarized in Fig. 1). For example, Semaphorins 
3B and 3F are putative tumor suppressors, while the expression of Semaphorin 3C, 3E 
and 5C has been associated with tumor invasion and metastasis.������������������������   ����������������������� Interestingly, certain 
Semaphorins display divergent activities in different cell types.���������������������������     These varied functions of 
Semaphorins are likely to be explained by the involvement of different receptor complexes 
and multiple signaling pathways.

Semaphorin Signaling Pathways

Plexins are the high affinity receptors for Semaphorins, although many class 3 secreted 
Semaphorins require coreceptor molecules, the Neuropilins, to trigger Plexin‑mediated 
signals.3 �����������������������������������������������������������������������������            Nine Plexins and two Neuropilins are found in humans. �����������������������   In addition to Plexins 
and Neuropilins, other cell surface molecules have been reported to interact with the 
Semaphorins with lower affinity, and to mediate their signals via partly understood 
mechanisms.4‑6

The intracellular region of the Plexins is highly conserved within the family but it 
does not share striking homology with other proteins or functional domains. It includes: 
(a) two highly conserved domains containing short motifs with similarity to GTPase 
Activating Proteins (GAP‑like domains), reported to bind and inactivate R‑Ras;7  
(b) one “linker” domain, which interacts with GTP‑bound monomeric GTPases of the 
Rho family but mediates no GAP activity;8,9 (c) in addition, Plexins of B subfamily 
include a C‑terminal consensus sequence that associates with PDZ domains, and with 
PDZ‑RhoGEFs in particular (inter alia, ref. 10). �����������������������������������������     Several questions regarding the roles of 
plexin cytoplasmic domains remain to be answered. A�������������������������������������     re the GAP‑like motifs only required 
to downregulate R‑Ras activity, or do they have additional functions? Is the function of 
the linker domains diverse in the various Plexins? What is the specific functional relevance 
of the PDZ‑domain binding sequence only found in B‑subfamily Plexins? Notably, 
many additional intracellular signal transducers have been reported to associate with 
Plexins, although the structural requirements for these interactions and their regulatory 
mechanisms are largely unknown. Therefore, further structure-function studies are needed 
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to identify the domains required to mediate different Semaphorin 
activities in vitro and in vivo.

Neuropilin‑1 and Neuropilin‑2 (Nrp1 and Nrp2) are 
Plexin‑associated coreceptors for most secreted class 3 Semaphorins 
in vertebrates. In addition, they play an important role in association 
with VEGF‑Receptors, whereby they regulate angiogenesis and 
lymphangiogenesis by binding VEGF family members.11‑13 ���������Notably, 
Nrp1‑/‑ knock‑out mice show embryonic lethality due to dramatic 
vascular defects, while Nrp2‑/‑ knock‑out mice are viable and show 
defects in lymphatic system formation.14‑15 ������������������������   There is a competition 
between class 3 Semaphorins and VEGF165 (but not the 121 isoform) 
for the binding site on Nrp1, but it is less clear whether this is also 
true for Nrp2����������������������������������������������������        . ��������������������������������������������������       However, many evidences seem to point against the 
idea that Semaphorins purely act as VEGF antagonists, and instead 
suggest that Semaphorin‑mediated control of angiogenesis requires 
Plexin signalling.16‑22 Moreover, certain results seem to break the 
dogma of Neuropilins only acting as coreceptors, and indicate that, 

upon binding VEGF/Semaphorins, they could elicit 
a signalling pathway on their own, via their short 
cytoplasmic domain and as yet largely unknown 
associated signal transducers.23 For instance, certain 
PDZ domain‑containing proteins have been shown 
to associate with the C‑terminus of NP‑1, although 
the functional role of these interactions is unclear.24,25 
Notably, the cytoplasmic tails of Nrp1 and Nrp2 are 
only 55% identical,26 which raises a major question: 
can they interact with different adaptors or signal 
transducers? Moreover, do the two Neuropilins 
have complementary roles or rather independent/
antagonistic functions? Although, Nrp1 and Nrp2 
have been shown to associate in receptor complexes 
upon overexpression,27 the functional relevance 
of this is not known. Furthermore, soluble forms 
of Nrp1 released in the extracellular space have 
been described, and they were found to act either 
as VEGF traps, or as pro‑angiogenenic factors in 
different reports, likely dependent on the different 
structure of these truncated forms.28‑32

It has been further shown that Plexins can associate 
in complexes with Tyrosine Kinase Receptors, such 
as ErbB2, VEGFR2, OTK, Met, and Ron�.33‑36 ����For 
example, Semaphorin 4D/PlexinB1 signalling may 
inhibit the migration of certain cancer cells, but 
it seems to have a reverse effect on others, when 
plexin‑associated tyrosine kinases get transactivated 
in the complex. Furthermore, PlexinA1 can 
alternatively transduce Semaphorin 6D signals either 
in complex with KDR or with OTK tyrosine 
kinases, leading to opposite functions (invasive 
growth or cell repulsion, respectively) in different cell 
populations during myocardial development.36 T���he 
molecular mechanisms controlling these multimeric 
receptor complexes are poorly understood. For 
instance, it is not known whether this is exclusively 
regulated at the protein expression level, or adaptor 
molecules are required for their formation on the 
cell surface. It is possible that different components 
of the Semaphorin receptor complexes are diversely 

expressed in different phases of tumor progression and invasive 
growth, thereby leading to the formation of signalling complexes 
eliciting differential (and potentially antagonistic) pathways.

T�����������������������������������������������������������         he signaling cascade of Plexins might also depend on their 
localization on the cell surface, possibly controlling a differential access 
to signal transducers. In fact, biological membranes contain specific 
microdomains, such as lipid rafts, which have been suggested to play 
a role in a variety of physiological and pathological processes. It is not 
known if the subcellular localization of resting and ligand‑activated 
Plexins (and associated receptor complexes) is regulated and may have 
a functional relevance, for example, in determining and maintaining 
cell movement and directionality. Intriguingly, because lipid rafts are 
enriched in GPI‑anchored proteins,37 class 7 Semaphorins (which are 
GPI anchored) might be preferentially located in these microdomains, 
although this remains to be studied.

In addition to mediating signals in receptor‑expressing cells, 
transmembrane Semaphorins have been suggested to mediate 

Figure 1. Semaphorin signals on the road to cancer invasion and metastasis. Semaphorins 
play a regulatory role on the main elements driving cancer progression. They can be 
seen as "stop" or "go" signals for tumor cells, as well as for stromal cells in the tumor 
microenvironment. The scheme features some examples of the semaphorin signals implicated 
so far. More information on the implicated receptors and functional activities of the different 
semaphorins are summarized in Table 1.
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so‑called “reverse” signaling pathways via their intracellular domain. 
The strongest evidence that Semaphorins can trigger bidirectional 
signals was obtained for Semaphorin 6D/PlexinA1 interaction in 
cardiac development in chick embryo.38 The potential functional 
relevance of this mechanism for other Semaphorins needs further 
investigation. Moreover, c�������������������������������������     an the extracellular domain of other 
Semaphorin receptors in addition to Plexins act as a ligand to induce 
reverse signalling in transmembrane semaphorins?

Semaphorin‑Mediated Activities

In addition to their role in axon guidance, Semaphorins 
provide signals to regulate cell migration. Migrating cells are 
guided by the complex integration of multiple motility‑promoting, 
motility‑inhibiting and directional signals. Moreover, recent 
evidences indicate that tumor cell migration may occur in three 
different ways: mesenchymal, proteolysis‑independent ameboid, and 
mesenchymal‑ameboid transition modes.39‑40 The mesenchymal 
migration mode is most commonly observed during development.41 
It is characterized by elongated cells with established polarity, 
featuring a “leading” and a “trailing” edge. Leading edge advancement 
requires F‑actin polymerization to induce cell protrusions,42 which  

in turn depends on Integrin‑mediated adhesion to the ECM and 
on the activity of intracellular transducers connecting adhesive 
complexes with the actin cytoskeleton (such as monomeric GTPases). 
Moreover, this process often implies the release of metallo‑proteases 
at the leading edge, to degrade extracellular matrix barriers. Notably, 
the leading edge contains a higher concentration of receptors for 
guiding cues (either attracting or repelling), and by integrating these 
signals it finely tunes the direction of migration. Semaphorins and 
plexins are known to be major regulators in this process.

Interestingly, it was found that tumor cells can also migrate with 
ameboid mode, independent of ECM degrading activity, via Rho  
kinase (ROCK)‑dependent actin cytoskeleton remodeling and 
rounded cell morphology.40 �������������������������������������      The ability of tumor cells to switch 
between different migration modes, in response to environmental 
changes, is probably responsible for the limited efficacy of therapeutic 
agents aimed at inhibiting cancer invasion. ������������������������   It is currently thought 
that the main role of Semaphorin signals in cell migration is in the 
regulation of integrin function and actin dynamics at the leading edge, 
mechanisms required for mesenchymal‑type of migration.22,43‑45 
T��������������������������   he negative regulation of b1‑Integrins mediated by plexins may 
thus hamper cancer cell migration and invasive potential. However, 
it could also cause cells to switch to ameboid movement, which is 

Table 1	 Semaphorins and semaphorin receptors in cancer

	 Receptors Known	 Reported Functions Potentially Relevant in Cancer
Sema3A	 Nrp1 (+ Plexins)	I nhibits angiogenesis.22,89 Inhibits breast carcinoma cell migration.18  
		  Regulates immune response.80  
		  Loss of expression (and loss of auto‑inhibitory loops) in mesothelioma and multiple myeloma.51,89

Sema3B	 Nrp1 and Nrp2 (+ Plexins)	 Putative tumor suppressor in different tumor types.65,66,68,110  
		I  nhibits growth and induces apoptosis in tumor cells.50,67,70

Sema3C	 Nrp1 and Nrp2 (+ Plexins)	 Activates Integrin‑mediated adhesion, migration and proliferation in endothelial and  
		  carcinoma cells.111,112 High expression correlates with metastasis from lung cancer.74

Sema3E	 PlexinD1 (Neuropilins?)	 Expression associated with the metastatic process.75,76  
		  Repels endothelial cells in development.92

Sema3F	 Nrp2 (+ Plexins)	 Acts as a tumor suppressor gene in experimental models.52‑54  
		I  nhibits tumor angiogenesis, lymphangiogenesis, and metastatic progression of melanoma cells.94

Sema4A	T im‑2, PlexinD1	 Activates T‑cell‑mediated immunity via Tim‑2.6 Suppresses angiogenesis via Plexin‑D1.95

Sema4B	 unknown	I nteracts with CLCP1, a protein with similarity to neuropilins, overexpressed in metastatic  
		  cells derived from lung cancer.113

Sema4D	 PlexinB1 (PlexinB2, CD72)	M ediates endothelial cell migration and tumor induced angiogenesis.98‑100  
		  Regulates monocytes migration and differentiation.105  
		��������������������������������������������       Promote leukaemia cells growth and survival.55,56  

		I  t is released during platelet aggregation.114  
		  Can trigger the activation of Met oncogene and lead to the invasive growth programme.34  
		  PlexinB1 is down regulated in mammary carcinomas with poor prognosis.115

Sema5A	 PlexinB3 (Proteoglycans)	 PlexinB3 can form a complex with Met oncogene and mediate its activation.116  
		  Sema5A may induce antagonistic responses (attraction/repulsion).117

Sema5C	 unknown	 Required for metastatic progression in a fly model of tumorigenesis.78

Sema6A	 PlexinA4	T he extracellular domain can be used to inhibit tumor angiogenesis.118

Sema6B	 PlexinA4	I ts expression is downregulated by antitumor agents in glioblastoma and mammary  
		  carcinoma cells.119,120

Sema6D	 PlexinA1	I t can elicit the activation of VEGF‑R2 associated in complex with PlexinA1  
		  and trigger invasive growth response in heart development via reverse signalling mediated  
		  by its cytoplasmic domain.36,38  
		M  ediates differentiation of dendritic cells and osteoclasts.63

Sema7A	 PlexinC1, Integrin‑b1, others?	 �������������  �� ���� ����� ������������ ���� ���������It induces FAK and MAPK activation, via Integrin‑b1 engagement.4  
		  ������������������������������������������      It regulates cells of the immune response.121,122

Most studied vertebrate semaphorins, their known receptors and functional activities potentially relevant in cancer.	
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not dependent on strong matrix adhesions.46 It will be interesting 
to address this question experimentally by studying tumor cell 
migration/invasion in 3D gels of extracellular matrix.47 Notably, 
semaphorin‑mediated activation of Tyrosine Kinase Receptors 
associated with plexins can instead lead to Rac activation and 
promote mesenchymal‑like cell motility. Moreover, Semaphorin 3C, 
which is overexpressed in certain tumor cells, was reported to increase 
integrin‑mediated adhesion, via as yet unclear mechanisms.48,49 
Furthermore, it has been shown that Sema7A, a semaphorin bound 
to the cell surface with a GPI anchor and containing an RGD 
adhesive motif, is capable of activating b1

-Integrin signalling in a 
plexin‑independent manner (probably acting as pseudo‑adhesive 
substrate) and promoting axonal outgrowth.4 Therefore semaphorins 
can regulate cell‑substrate adhesion in several ways.

In addition to controlling cell migration, Semaphorins and their 
receptors have also been implicated in regulating cell proliferation, 
cell survival and differentiation. For example, Semaphorin 3A and 
Semaphorin 3B may act as VEGF165 antagonists and thereby lead 
to cell growth inhibition or apoptosis,50‑51 Semaphorin 3F has 
been shown to have anti‑proliferative activity,52‑54 while Sema4D 
appears to be a pro‑survival factor.34,55‑56 Intriguingly, Neuropilin‑1 
overexpression has been reported to promote proliferation and prevent 
apoptosis in different tumor cell lines�.57‑62 Of potential relevance 
to cancer, is the reported function of Semaphorin6D‑PlexinA1 
signalling in the differentiation of dendritic cells and osteoclasts.63 
Moreover, a subset of semaphorins have been clearly shown to 
regulate the immune function.64

Semaphorins and Semaphorin Receptors in Cancer

Cancer is a genetic disease, as specific ���������������������������   mutations can drive cancer 
onset and progression. The mutational profile of genes potentially 
involved in carcinogenesis is thus commonly studied in tumor 
samples. There are a few reports of mutations affecting Semaphorin or 
Semaphorin‑receptor genes, however they have not been convincingly 
linked to tumor onset or progression until now. Point mutations in 
these genes could perturb dimerization, ligand‑receptor binding or 
signal transduction pathways. Mutations could also generate trun-
cated forms of the Plexins, potentially acting as dominant negative or 
constitutive active molecules.

Interestingly, the expression of Semaphorins seems to be often 
regulated in cancers. For example, Semaphorin 3B and Semaphorin 
3F are considered putative tumor suppressor genes since the 
chromosomal region 3p21.3 in which they are located is frequently 
deleted in lung tumors and undergoes promoter silencing by 
hyper‑methylation, leading to reduced expression of these genes�.65‑70 
Moreover it has been reported that the expression of Sema3B and 
Sema3F is under control of p53 tumor suppressor.53,71 In contrast, 
Sema3C, Sema3E and Sema5C have been found upregulated in 
tumors and their expression can promote cancer progression in 
experimental models.72‑78 ���������������������������������������     Intriguingly, it was reported that the 
developmental expression of Semaphorin 3A is under control of 
hypoxia‑driven factor HIF1a,79 a mechanism that is also often in 
place during tumor growth and tumor angiogenesis. In fact, although 
Sema3A is known to inhibit angiogenesis, it is expressed in several 
cancer cells and it may regulate the anti‑tumor immune response;80 
therefore, its functional role in cancer progression deserves further 
investigation in vivo.

Expression of PlexinD1, which is downregulated after embryo 
development, has been specifically reported in tumor cells and 
in tumor endothelial cells.81 However the functional role of this 
finding has not been established. On the other hand, it has been 
recently reported that PlexinB1 expression is lost in a subset of breast 
carcinoma characterized by poor prognosis, high proliferative rate 
and hormone‑dependence.82 Neuropilin‑1 expression is frequently 
elevated in tumor cells and correlated �������������������������  with cancer progression; 
this effect is putatively explained by an ability to promote VEGF 
signalling����������������������������������������       in trans in adjacent endothelial cells.58,83 �������������Neuropilin‑2 
is upregulated in a subset of cancer cells, especially of neural crest 
origin.84‑86 I������������������������������������������������������       n bladder cancer, Nrp2 expression has been correlated 
with advanced stage tumors,87 while in gastrointestinal tumors loss of 
its expression seems to correlate with progression;88 thereby the role 
of Nrp2 in controlling tumor proliferation remains controversial.

Tumor micro‑environment plays an important role in cancer 
progression. This depends on the recruitment of endothelial cells, 
leucocytes, fibroblasts and additional stromal cells, and on the 
growth factors, cytokines and proteases they release. In addition, the 
extracellular matrix surrounding the tumor regulates cell migration 
and is a reservoir of growth factors in inactive form. Several members 
of the Semaphorin family regulate endothelial cell migration and 
angiogenesis: e.g., Semaphorin 3A, 3F, 3E, 4A and 6A can inhibit 
angiogenesis.18,22,89‑95 Moreover, certain Semaphorins may compete 
with VEGFs for the binding site on Neuropilins.14,96‑97 On the 
other hand, �����������������������������������������������������       Semaphorin 4D is a pro‑angiogenic factor released by 
human cancer cells (via MMP‑mediated cleavage) and its activity 
has been shown to mediate tumor growth�.98‑100 Different leuco������cytes 
are recruited to tumor sites via cytokines secretion, and while some 
of them participate in the anti‑tumor immune response, others 
appear to be responsible for promoting tumor progression. For 
instance, tumor‑associated macrophages (TAMs) are well known 
to regulate cancer cell invasion and angiogenesis,101 as well as 
metastatic dissemination. In vivo studies have further shown that 
TAMs localize preferentially in the proximity of tumor vessels where 
they can affect permeability and promote tumor metastasis.102 
Notably, Semaphorin 4D and Semaphorin 7A have been reported to 
regulate monocytes migration in vitro.103‑106 �����������������������   However, it remains to 
be seen if semaphorin signals can regulate the recruitment of tumor 
associated macrophages affecting tumor progression.

Future Perspectives

Plexins and Neuropilins are well known semaphorin receptors; 
however the molecular mechanisms mediating multifaceted 
semaphorin functions require further elucidation. For instance, 
several signal transducers for semaphorins have been identified in 
experimental studies, and yet the functional relevance in vivo of these 
multiple pathways, in different tissues and tumor types, remains 
largely unknown. Future studies, e.g., by proteomic approaches, 
could lead to the identification of specific molecules associated with 
Semaphorin receptors on the surface of different cell populations. 
Moreover, loss‑of‑function screens could reveal the signal transducers 
implicated in specific semaphorin functions.

In recent years����������������������������������������������������       , several reports have underlined the importance of 
a minor fraction of the cells forming a tumor mass that is actually 
endowed with tumor‑initiating and tumor‑maintaining ability (often 
indicated as “cancer stem cells”; reviewed in ref. 107). Moreover, 
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cancer‑initiating cells may be the only ones which can effectively 
produce metastatic dissemination. This finding is particularly relevant 
to medicine, since novel targeted therapies should then aim at hitting 
this specific cell population in the tumor. However, the identity of 
these cancer‑initiating cells remains elusive, and their behaviour 
seems to be under control of the tumor microenvironment.108 
For instance, it was shown that ephrin‑B1 acts as regulatory signal 
restraining normal stem cells, but not cancer cells, into the intestinal 
crypt niche.109 Thus, it appears of great importance to identify 
effective regulatory signals for cancer stem cells. Semaphorins and 
Plexins may be intriguing candidates for this function, since they 
are expressed in developmental and tumor tissues, and are known to 
regulate cell‑cell adhesion/dissociation, as well as cell motility and cell 
differentiation. Future studies will reveal whether there is a role for 
these signals in the function of normal and neoplastic stem cells.
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