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Abstract
Transforming growth factor (TGFb) prevents TH1 and TH2 differentiation and converts 

naïve CD4 cells into Foxp3-expressing T regulatory (Treg) cell.1,2 In sharp contrast, in 
the presence of pro-inflammatory cytokines, including IL-6, TGFb not only inhibits Foxp3 
expression but also promotes the differentiation of pro-inflammatory IL17-producing CD4 
effector T (TH17) cells.3-5

This reciprocal TGFb-dependent differentiation imposes a critical dilemma between 
pro- and anti-inflammatory immunity and suggests that a sensitive regulatory mechanism 
must exist to control TGFb-driven TH17 effector and Treg differentiation. A vitamin A 
metabolite, retinoic acid (RA), was recently identified as a key modulator of TGFb-
driven-immune deviation capable of suppressing TH17 differentiation while promoting 
Foxp3+Treg generation.6-10

RA and TGFb are both abundantly produced in the gut and TGFb is crucial for both 
systemic and mucosal immune-regulation.11,12 Although the so-called thymus-derived 
naturally occurring Treg cells (nTreg) are important for the control of a variety of auto-
immune processes, it has been shown using monoclonal TCR transgenic mice devoid of 
nTreg that peripheral neoconverted Foxp3+ Treg cells are efficient and sufficient for oral 
tolerance induction.2 Furthermore, Mucida et al. also showed that blocking of TGFb 
during feeding of the antigen (OVA) inhibited both; the establishment of oral tolerance 
and the peripheral conversion of OVA-induced Treg cells.2 The abundant production of 
TGFb and RA in the mucosa and the ability of RA to promote TGFb-dependent Treg 
differentiation may thus be directly related to the increased frequency of Foxp3-expressing 
Treg cells in the lamina propria in normal mice.6-10,13

TGFb and RA each are known to play significant roles in a variety of developmental 
processes, including the differentiation of lymphocyte lineages. Whereas TGFb medi-
ates the direct inhibition of TH1 and TH2 cytokine polarization concomitant with the 
generation of Tregs.14 RA, in contrast, is a potent stimulator of TH2 differentiation 
but a profound inhibitor of IFNg synthesis.15 In addition to their separate actions, the 
functions of TGFb and RA are also known to merge in a variety of biological processes, 
including embryogenesis, organ development and carcinogenesis.16 For example, 	
TG-interacting factor (TGIF) is a transcriptional repressor common to the TGFb and 
retinoic acid signaling pathways.17 Moreover, mice with deficiency in the enzyme required 
for RA production, retinaldehyde dehydrogenase-2 (Raldh2), die before birth with several 
developmental defects and reduced TGFb1.18-20 On the other hand, RA can also inhibit 
TGFb mediated effects, such as lung fibrosis.21

The finding that RA plays a central role in directing the immunological function 
of TGFb expands the consequences of their interrelationship to the adaptive immune 
system.6-10,13,22 Recent evidence shows that the signaling through RA-receptors may 
play an important role in the control of inflammation in the gut.6-10,13 Exogenous RA 
was shown to inhibit induction of TH17 cells in vivo using an infection model whereas 
injection of RAR antagonists resulted in decrease of Foxp3+Treg cells in the lamina 
propria.6 Iwata and co‑workers have previously shown that RA production by mucosal 
DCs is crucial for the homing of T cells to the intestinal lamina propria,23 and Mora et al. 
extended this finding to B cells migration to the gut and IgA class switching.24 Whether 
the production of RA by mucosal DCs is crucial for the development of oral tolerance and 
for the conversion of naïve T cells into Foxp3+Treg in the gut, as well as for the mucosal 
in situ control of TH17 cells, is not yet known.
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Our study and those of others show that RA signaling through 
RAR receptors in the T cell blocks the inhibitory effects of inflam-
matory cytokines, such as IL-6, on the TGFb mediated Foxp3 
induction. Similarly to the RA and TGFb pathways interaction, 
several studies have shown that RA may synergize or antagonize with 
IL-6 signaling or production.21,24 Moreover, RA has been shown to 
improve clinical symptoms and reduce the levels of inflammatory 
cytokines, including IL-6, TNFa and IFNg in a model of arthritis,25 
an autoimmune disease shown to correlate with increased production 
of IL-17.26 Finally, it was shown that RA directly inhibits retinoic 
acid orphan receptor g T (RORgt) that is involved in TH17 differen-
tiation and which requires IL-6 for its expression.27 It is not known, 
however, whether RA antagonistic effects on IL-6 signaling extend to 
the recently described IL-21 pathway of TH17 differentiation.28-30

Transcription factors STAT5 and STAT3 have been shown to 
be important for the transcription of Foxp3 and IL-17 respec-
tively.22,27,31 The enhanced expression of Foxp3 in the presence of 
RA suggests a potential relationship between STAT5 and RARs in 
a similar fashion as the cooperation between STAT3 and RORgt. 
It is therefore perhaps not a coincidence that RORgt shows strong 
homology with the RARs and also appears to function in the context 
of transcriptional activators and repressors.32 STAT5 and RARs have 
also been shown to physically interact in vivo to promote RAR-
mediated transcription.33 In addition, it was shown that the STAT5 
consensus binding site overlaps with a RAR-response element which 
leads to promoting coordinated transcription activity rather than 
competition for the same site.33 The cooperation between STAT5 
and RARs resulted in STAT5-enhanced responsiveness of the 
RARs to RA induced transcription of target genes.33 It was further 
demonstrated that RAR and STAT5 can bind the same repressor of 
transcription, SMRT, which can be released by RA.34 RA mediated 
effects may thus reflect the intense communication between the 
STAT and RAR families of transcription factors, which has not been 
explored for the differentiation of T lymphocytes. It is also possible 
that RA might synergize with Smads that act downstream of TGFb 
receptor signaling, and/or with the transcription factor Runx3, 
which is involved in the induction of CD103 expression and which 
physically interacts with Smads to cooperate in TGFb mediated 
signaling.35

The immune regulatory mechanism we have delineated has 
particular relevance for the mucosal immune system. The intestinal 
mucosa forms the largest surface that is exposed to microbes, innoc-
uous and pathogenic, and diet proteins; and also houses the largest 
proportion of lymphocytes that in physiological conditions have an 
immune quiescent state.36 Therefore, an improper balance between 
inflammatory and suppressive immunity can jeopardize mucosal 
homeostasis. The abundant production of RA by the intestinal 
epithelium and dendritic cells, and the dominance of RA over IL-6 
in balancing the effects of TGFb, may account for the predominance 
of Foxp3+ T cells in the intestine, allowing tolerance to prevail in the 
face of the extensive microbial load.
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