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Aerobic metabolism inevitably produces reactive oxygen species 
(ROS), including hydrogen peroxide, which may cause damage 
to the cell. Besides this toxic effect, hydrogen peroxide has an 
important signaling function in plant development and response to 
environmental stimuli. So, the balance of toxic and signaling effects 
of hydrogen peroxide is highly dependent on mechanisms to adjust 
its level in the different cell compartments. We recently described 
a redox system, formed by NADPH thioredoxin reductase (NTR) 
and 1-Cys peroxiredoxin (1-Cys Prx), able to use the reducing 
power of NADPH to reduce hydrogen peroxide. This system is 
localized in the nucleus of wheat seed cells and probably has an 
important antioxidant function in aleurone and scutellum cells, 
which suffer oxidative stress during seed development and germi-
nation. We discuss here the possibility that the control of the level 
of hydrogen peroxide in the nucleus may be important to balance 
redox regulation of gene expression and cell death in cereal seed 
cells.

Introduction

Life in aerobiosis is challenged by the production of reactive 
oxygen species (ROS) including hydrogen peroxide. In plants, 
different environmental stimuli increase ROS production; however, 
there are tissues that naturally suffer oxidative stress during plant 
growth and development. This is the case of the cereal seed that 
suffers oxidative stress provoked by the massive loss of water at late 
stages of development, and after resumption of respiration following 
germination.1-4 Though during seed development different tissues 
undergo programmed cell death (PCD),5-7 aleurone and scutellum 
cells play an essential role in germination and therefore have to 

survive this oxidative stress. Germination of cereal seeds is activated 
by gibberellins which induce in aleurone cells the expression of genes 
encoding hydrolytic enzymes that allow the mobilization of the 
storage components of the starchy endosperm.8 Once this process is 
completed, gibberellins activate aleurone PCD,9 which progression 
takes place after cytoplasmic ROS detoxification systems are down-
regulated.10 We have recently described that NADPH thioredoxin 
reductase (NTR) supports the antioxidant activity of 1-Cys perox-
iredoxin (1-Cys Prx) using NADPH as source of reducing power. 
Interestingly, this novel redox system accumulates in the nucleus of 
seed cells suffering oxidative stress.11

Signaling versus Toxic Effect of Hydrogen Peroxide in the 
Nucleus of Wheat Seed Cells

The finding that the NTR/1-Cys Prx system accumulates in the 
nucleus of seed cells suffering oxidative stress, and in vitro assays 
showing that this system is able to use NADPH to reduce hydrogen 
peroxide provide evidence of a mechanism to control the oxidant 
environment of the nucleus. A primary function of this system may 
be to avoid damage to DNA and nuclear structures, which is prob-
ably important taking into account the recent demonstration of ROS 
production in nuclei of plant cells.12 DNA protection assays in vitro 
support this detoxification role of the nuclear-localized hydrogen 
peroxide scavenging system.13,14

However, the control of the level of hydrogen peroxide in the 
nucleus probably has a signaling function which may involve redox 
regulation of transcription, as shown in yeast and animal cells.15 In 
S. pombe the expression of genes of the antioxidant response is regu-
lated by a bZIP transcription factor, Pap1, activated by the formation 
of an internal disulfide bridge upon H2O2 treatment.16 Although 
the available information on redox regulation of gene expression in 
plants is still scarce,17 the DNA binding activity of several transcrip-
tion factors depends on the redox environment.18-20 In the context 
of gene expression in cereal seeds, it was shown that P1, a R2R3-type 
MYB transcription factor from maize, requires reducing conditions 
for DNA binding.21,22 This finding is interesting because a master-
piece of gene regulation in response to gibberellins in aleurone cells 
from cereal seeds, GAMYB,23 is a R2R3-type MYB transcription 
factor. Though no redox regulation of its activity has been reported 
so far, an Arabidopsis line overexpressing 1-Cys Prx showed lower 
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germination efficiency than wild type,14 suggesting that the nuclear 
redox environment plays an important role in the activation of 
germination.

A remarkable feature of the nuclear NTR/1-Cys Prx system is the 
sensitivity of the 1-Cys Prx to oxidant conditions, which provoke 
overoxidation of the peroxidatic Cys residue to sulfinic acid, thus 
inactivating the enzyme.11 Inactivation by overoxidation is a well-
described characteristic of eukaryotic 2-Cys Prxs,24 important for 
hydrogen peroxide-dependent signaling in eukaryotes.25,26 Whilst 
the overoxidation of 2-Cys Prx to sulfinic acid is reversible,27 over-
oxidation of 1-Cys Prx seems to be irreversible.28 Therefore, the 
progressive overoxidation of the nuclear 1-Cys Prx will probably 
increase the oxidant environment of the nucleus, according to the 
scheme depicted in Figure 1. The level of hydrogen peroxide in the 
nucleus may influence gene expression as shown for the redox regu-
lation of the yeast Pap1 transcription factor, which is mediated by a 
2-Cys Prx at low concentration of H2O2

29,30 but not at high concen-
tration of H2O2 because the 2-Cys Prx becomes overoxidized.30 
Therefore, in germinating seeds the nuclear NTR/1-Cys Prx redox 
system would control the level of hydrogen peroxide allowing gene 
expression. Then, as 1-Cys Prx is progressively inactivated by over-
oxidation, the nuclear environment is likely to become more oxidant, 
thus favouring cell death9 (Fig. 1). In yeast and animal cells hydrogen 
peroxide promotes DNA cleavage mediated by toposimerase I and 
II.31,32 Whether the increase of hydrogen peroxide provokes cell 
death in cereal seeds through the damage of nuclear structures or 
by the regulation of signal transduction events, as occurs in animal 
cells,33 is not yet known.
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Figure 1. The nuclear-localized redox system formed by NTR and 1-Cys Prx 
is able to use NADPH to detoxify hydrogen peroxide in cereal seeds suffer-
ing oxidative stress. This system may control the oxidant conditions in the 
nucleus, which is probably important for redox regulation of gene expres-
sion in germinating seed cells. As 1-Cys Prx is progressively inactivated by 
overoxidation, the increase of the oxidant conditions in the nucleus promote 
oxidative damage and cell death.
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