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Plant viruses spread cell-to-cell in infected plants by exploiting 
plasmodesmata (PD), gatable channels in the cell wall that provide 
cytoplasmic passageways for the trafficking of informational macro-
molecules. Since it became known that the intercellular spread of 
Tobacco mosaic virus (TMV) depends on virus-encoded movement 
protein (MP), the mechanism by which this protein mediates in 
the targeting of this virus to PD is subject to intense studies. TMV 
movement occurs in a non-encapsidated form and thus promises 
to reveal important host functions involved in the intra-and inter-
cellular trafficking of RNA molecules. We have recently presented 
new evidence that the cell-to-cell trafficking of TMV RNA (vRNA) 
involves the formation and intracellular trafficking of distinct 
MP particles. Upon assembly, these particles detach from cortical 
microtubule (MT) sites and then move with the flow of ER through 
the cell. During passage the particles continue to undergo transient 
interactions with MT which may guide the particles to their desti-
nation. The comprehensive analysis of particle composition may 
lead to important insights into the regulation of RNA transport in 
plants and may also reveal potential similarities to RNA transport 
mechanisms in animals and humans.

To support the spread of TMV infection,1 the MP accumulates in 
PD2 and modifies their size exclusion limit.3 The protein also binds 
single-stranded nucleic acids in vitro,4 and thus may form a complex 
with vRNA to facilitate vRNA transport from sites of replication 

to PD. Consistent with the notion that most if not all plant RNA 
viruses replicate in association with membranes, the MP has 
predicted transmembrane domains5 and cofractionates with 
membranes isolated from infected cells.6 The use of TMV derivatives 
expressing functional MP:GFP fusion protein led to the visualization 
of cellular MP-interacting components that may have a role in the 
targeting of the MP and/or the vRNP to PD.7-9 Initial observations 
concentrated on cells behind the leading front of infection where 
high levels of fluorescent MP:GFP accumulate.8-10 In such cells, 
the protein occurs in association with ER membrane-containing 
inclusion bodies (IB), which contain viral replicase and vRNA,8,11 
and thus likely represent aggregates of ER and viral replication 
complexes (VRCs). Consistent with the association of the ER with 
actin,12 these ER aggregates occur in proximity to actin microfila-
ments (MF), which contribute to their formation, their size and their 
mobility.13,14 Given that ER membranes are continuous between 
cells through PD,15,16 they provide a potential pathway for the 
movement of membrane-associated VRCs from the infected cells into 
adjacent cells. This model of TMV movement appears possible since 
ER-targeted membrane proteins are able to laterally diffuse within 
the membrane17,18 and to move cell-to-cell.17 Moreover, conditions 
that affect the structure of the ER or of the associated MF network 
can reduce the efficiency by which the MP is targeted to PD.19

In addition to IB, the MP also accumulates in association with 
MT7,8 and functional studies involving various MP mutations, 
including conditional mutations, have demonstrated that the ability 
of MP to interact with MT tightly correlates with the vRNA move-
ment function of the protein in leading front cells.20 However, 
because of the very low amount of MP:GFP in leading front cells, 
the exact function of MT in the vRNA movement process has been 
elusive. The role of MT and MF in TMV movement was addressed 
by indirect approaches using chemical drugs.10,13,14,21 However, 
although these drugs may cause specific defects in the TMV trans-
port pathway, these defects are difficult to detect at the level of TMV 
spread, since the spread of infection requires only low amounts 
of MP22 and only few spreading viral genomes, and thus occurs 
unaltered if the transport pathway is not completely blocked.23 A 
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to interact with microtubule end-binding protein 1 (EB1)28 as well 
as with g-tubulin,26 thus with key players in the regulation of MT 
polymerization dynamics. Based on these findings, we propose that 
TMV movement involves the transport of MP and of MP-vRNA 
particles with the flow of the ER membrane. MT serve as sites for 
the assembly of movement-compentent RNPs and may provide 
positional information that guides the RNP particles to PD. As 
shown in Figure 1, we propose an “attachment complex release” 
(ACR) mechanism, which involves MT polymerization to mediate 
the controlled release of the assembled particle from MT proximal 
sites. As the particle moves with the ER and encounters a new MT, 
the particle docks again and may be quality-checked before being 
released again. Potentially, MT may also provide motive force to the 
ER-mediated transport of the RNP particles. Thus, in an alternative 
model, a polymerizing MT end attaches to the ER-associated RNP 
particle through interaction with MP and pushes the particle into 
a given direction. Although MP particles particularly localizing to 
the tips of growing MTs were not observed, such “tip-attachment 
complex” (TAC) mechanism has been described for the extension of 
ER tubules in mammalian cells.29

Following this first characterization of MP particles associated 
with the transport of RNA to PD, a number of additional questions 
remain. For example, since the MP binds single-stranded nucleic 
acids in a sequence-independent manner4 and since MP was recently 
shown to facilitate the spread of RNA-based silencing signal mole-
cules,30 it will be interesting to determine whether the MP particles 
can transport different RNA sequences and whether the specific 
RNA molecules contained in the particles are non-cell-autonomous.

Moreover, although RNA molecules accumulate in PD together 
with MP, further studies will be needed to reveal whether the 
particles observed in the cytoplasm indeed represent the vehicles 
that target RNA to PD or whether they could represent recycling 
MP-containing vesicles that only form after MP has performed its 
RNA transport function. Since cytoplasmic macromolecular RNA 
structures can be of different nature,31 it will important to determine 

measurable effect on TMV spread was observed upon 
disruption of the actin cytsokeleton for several days.13,14 
However, because of the duration of actin poisoning it 
seems possible that unspecific secondary effects might 
play a role. The application of actin polymerization 
inhibitors led to contrasting observations with respect to 
the effects on the targeting of MP to PD.19,24

Novel insights into the cellular events with relevance 
to the mechanism supporting the intercellular spread of 
vRNA were achieved when leading front cells of infec-
tion sites in leaves caused by a TMV derivative encoding 
a temperature-sensitive MP fused to GFP were analysed 
by highly sensitive digital video microscopy.25 These 
studies revealed the occurrence of small MP particles 
emanating from IB at permissive temperature. Similar 
particles were then also observed in leading front cells of 
infection sites produced by a virus encoding wild type 
MP. Moreover, the analysis of infection sites in plants 
expressing GFP-tagged a-tubulin revealed that the 
mobile particles occur proximal to MT.

Our recent publication26 describes transient expres-
sion experiments to further characterize the particle 
movements and their role in vRNA trafficking. The MP particles 
produced under transient expression conditions are functionally 
significant and functionally related to the particles in infected cells 
because in either system the formation of the particles is temperature-
sensitive in the presence of a temperature-sensitive mutation in MP, 
which also confers temperature-sensitivity to the intercellular vRNA 
movement function of the protein. Using a MP fused to RFP and 
by using GFP to label the mRNA which encodes MP:RFP, evidence 
is demonstrated that the MP mediates the targeting of its own 
mRNA to PD. Moreover, these experiments provide first indications 
that GFP-tagged mRNA occurs in mobile MP:RFP particles, thus 
suggesting that MP binds RNA in vivo and mediates RNA transport 
through the formation of an RNP complex. Mobile RNA particles 
were also observed upon the labeling of the mRNA of RFP, thus in 
the absence of MP. However, RFP mRNA did not accumulate in PD, 
thus indicating that the accumulation of RNA in PD is a function of 
MP. The observation of RFP mRNA particles may suggest that MP 
associates with an existing RNA transport mechanism and functions 
by deviating this transport pathway towards PD.

Moreover, using plants in which either the ER or the MT are 
labeled with GFP the movements of the particles are shown to occur 
with the flow of ER. Interestingly, in advance and during the move-
ment with the ER the particles transiently anchor to MT proximal 
sites. When the cells are treated with MT disrupting agent and 
observed over time, the movements of the particles are halted before 
MT depolymerize, thus suggesting that the particle movements 
require dynamic MT. The interactions of the particles with MT 
during early infection may represent the mechanism that seeds the 
accumulation of MP along the MT during later stages of infection, 
thus after MP has completed its vRNA movement function. The 
MP may interact with MT through direct binding as is suggested 
by the ability of MP to bind tubulin and MT in vitro and also to 
bind in vivo to MT in various plant and non-plant cell systems.21,27 
Consistent with the observations suggesting interactions of MP with 
dynamic MT during early infection stages, the MP has the capacity 

Figure 1. Hypothetical ACR and TAC mechanisms by which dynamic microtubules could 
participate in the controlled maturation and trafficking of MP-vRNA particles in the ER 
membrane. ACR, attachment complex release mechanism; TAC, tip attachment complex 
mechanism.
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if the observed mobile RNA particles indeed represent transport 
particles. Given published evidence that TMV movement occurs in 
the form of intact replication complexes,14 further studies should 
also be aimed at elucidating whether the MP particles could represent 
specialized ER subdomains or lipid rafts that translocate in the ER 
membrane and harbor VRCs. These subdomains may be movement-
competent during early stages of infection and may transform into 
viral factories that eventually grow into IB during later stages. The 
latter hypothesis may be supported by the observation that several 
MP particles joined larger MP-containing structures in time-lapse 
movies.26

Future research should also investigate the extent by which the MP 
particles may share features with RNA transport particles described 
in animal systems. Consistent with our observations, RNA transport 
in animal systems usually involves MT32-35 and in some cases also 
the ER,36,37 and it will be interesting to determine whether conserved 
mechanisms play a role. Studies in neurons have shown that RNA 
molecules within transport particles are translationally repressed 
and that the particles contain, in addition to several RNA-binding 
proteins, important components of the translation machinery that 
may be needed to initiate translation when the particles reach their 
final destination.32 Intriguingly, there is evidence indicating that also 
the RNA of TMV is translationally repressed during transport. Thus, 
translation of TMV RNA appears to occur only after transport into 
recipient cells and is controlled by a process involving phosphoryla-
tion of MP by protein kinase C.38,39 Should the RNA carried in 
MP particles indeed be translationally repressed, the next exciting 
question might be whether this repression involves sRNAs. Recent 
findings indicate that translational repression by miRNAs in plants 
involves MT dynamics.40 This suggests the exciting possibility that 
dynamic MTs, from which MP particles are released upon matura-
tion for transport with the ER, represent cellular sites at which the 
transport particles are formed and at which translational repression 
of RNA is established. In this respect in may be pertinent to also ask 
whether the MP particles share features with processing bodies (P 
bodies), which play a key role in the sRNA-mediated translational 
inhibition in animals.41 Although P bodies and RNA transport parti-
cles are distinct in mammalian neurons, they interact by docking42 
and may also fuse, as indicated by observations in Drosophila.43

Thus, the observation of mobile MP particles in leading front 
cells of spreading TMV infection sites opens the window for exciting 
new scientific questions and experimental approaches to reveal the 
cellular mechanisms that control and function in the transport of 
RNA, intercellular communication, plant development and viral 
disease.
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