
Under abiotic stress conditions, rapid increases in reactive oxygen 
species (ROS) levels occurs within plant cells. Although their role 
as a major signalling agent in plants is now acknowledged, elevated 
ROS levels can result in an impairment of membrane integrity. 
Similar to our previous findings on imposition of salt stress, appli-
cation of the hydroxyl radical (OH•) to Arabidopsis roots results in 
a massive efflux of K+ from epidermal cells. This is likely to cause 
significant damage to cell metabolism. Since K+ loss also occurs 
after salt application and salt stress leads to increased cellular ROS 
levels, we suggest that at least some of the detrimental effects of 
salinity is due to damage by its resulting ROS on K+ homeostasis. 
We also observed a comparative reduction in K+ efflux by compat-
ible solutes after both oxidative and salt stress. Thus, we propose 
that under saline conditions, compatible solutes mitigate the 
oxidative stress damage to membrane transporters. Whether this 
amelioration is due to free-radical scavenging or by direct protec-
tion of transporter systems, warrants further investigation.

Reactive oxygen species (ROS) are continuously produced as 
by‑products of various metabolic pathways.1 Under unstressed 
steady‑state conditions, cellular ROS levels are kept in check by the 
sophisticated antioxidant defence system.2 However, under adverse 
environmental conditions, the balance between ROS production 
and its subsequent scavenging may be perturbed, leading to a rapid 
increase in ROS levels.3 Although significant progress has been made 
in defining ROS as a major signalling agent in plants,3 ROS can 
react with a large variety of biomolecules, causing lipid peroxida‑
tion and impairing membrane integrity.4,5 One such abiotic stress 
is salt stress,6 with ROS generation occurring within minutes of salt 
application.7 Alleviation of oxidative damage may be, therefore, an 
important strategy of plant salt tolerance.8

One of the earliest measurable responses to salt stress is a massive 
K+ efflux from plant roots.9,10 Such K+ efflux is initiated within 

seconds of acute salt stress and may last for several hours11,12 
reducing the intracellular K+ pool13,14 and significantly impairing 
cell metabolism. Consistent with the key role of K+ homeostasis in 
salt tolerance mechanisms15 a reduction of K+ efflux correlates with 
increased salt tolerance.11,12

We have previously reported that hydroxyl radical (OH•) applica‑
tion to Arabidopsis roots also results in a rapid efflux of K+ from the 
epidermis.16 In this report, we find a similar K+ efflux response.17 As 
is the case for salt stress,9 we found that membrane depolarisation 
could be responsible for a substantial part of this efflux. However, an 
observed discrepancy between the membrane depolarisation and the 
pattern of K+ efflux indicates that voltage‑dependence is not the only 
factor influencing K+ loss from the root cells after oxidative stress. 
Demidchik et al.16 demonstrated that stress‑induced K+ efflux could 
be mediated by activation of K+ outward rectifying channels directly 
by OH•. This direct effect on K+ transporters could also account 
for our observed delay before the peak efflux of K+ is measured, 
indicating that a certain amount of time is required before maximal 
direct damage by OH• to transporters occurs. Because both K+ 
channel blockers and non‑selective cation channel blockers reduce 
this efflux, it indicates non‑specificity in OH• attack. Furthermore, 
combinations of these channel blockers were effective in reducing K+ 
efflux implying that, at least in the short term, the damaging effects of 
OH• is due to compromising the transporter systems as opposed to 
lipid peroxidation. Certainly, K+ channels harbour reactive groups, 
thus are expected to be sensitive to ROS.18

We have previously shown that the exogenous application of low 
concentrations of a variety of compatible solutes reduces the salt‑induced 
K+ efflux.19,20 Plants, when confronted with a saline environment, 
respond with a significant elevation in their compatible solute levels. 
This ameliorates the detrimental effects of salinity.21 However, their 
original proposed role in cellular osmoregulation is under question: 
their concentration in transgenic plants overexpressing osmolyte 
biosynthetic genes is not significant for osmotic adjustment, despite 
showing improved salt tolerance.8 Furthermore, one hallmark of the 
detoxification effect is its lack of specificity, that is, transgenic plants 
have increased tolerance not only to high salt, but also to drought, 
cold and heat shock,22,23 stresses that also result in ROS production.3 
Certainly, ecotopic expression studies suggest that compatible solutes 
increase stress tolerance by protection of membranes and proteins 
against ROS.6
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We show that in this work that exogenous application of low 
concentrations of a range of compatible solutes significantly reduces 
OH•‑induced K+ efflux,17 a similar effect to that we reported after 
salt application to barley roots19 and also observed in Arabidopsis 
(Fig. 1). Interestingly, we found that not only known free‑radical 
scavenging osmolytes,24 but also glycine betaine, previously found 
to be non‑effective in ROS scavenging,24 were effective in reducing 
OH•‑induced K+ efflux. Indeed, glycine betaine showed a greater 
mitigation of OH•‑induced K+ efflux compared to that induced by 
50 mM NaCl (Fig. 1). However, it is open to speculation as to whether 
this mitigation is via direct channel blocking, a direct protection of ion 
channel proteins or by some other protective mechanism.

In our further investigations we have found that salt‑tolerant 
barley show a reduced ROS‑induced K+ efflux compared to sensitive 
varieties.25 This superior ability of salt‑tolerant barley cultivars of 
preventing K+ loss further indicates a possible causal link between salt 
and oxidative stress tolerance. We propose that upon the imposition 
of salt stress, the instantaneously resulting membrane depolarisation9 
results in activation of depolarisation activated K+ outward‑rectifying 
channels, leading to the initial massive K+ efflux. Over the longer 
term, ROS levels within the plant cell increase,7 resulting in direct 
damage to K+ transporters and the longer‑term sustained loss of K+ 
from the cell. Due to mitigation of both NaCl‑ and OH•‑induced 
K+ efflux by compatible solutes, we propose that one of their primary 
amelioratory effects is through reducing the damaging effects of 
salt‑produced ROS on K+ transporter, and by this means, reducing 
the effects of stress damage. Whether this amelioration is achieved 
through free‑radical scavenging or due to a direct protection of 
membrane transports warrants further investigation.
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Figure 1. Effects of exogenous supply of compatible solutes on net peak K+ 
efflux after application of either 1 mM Cu/a or 50 mM NaCl. Roots were pre-
incubated for 1 h in 5 mM concentration of a number of compatible solutes 
prior to treatment. Mean ± SE (n = 6–8).
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