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Article Addendum

Root Growth Reacts Rapidly and More Pronounced Than Shoot Growth
Towards Increasing Light Intensity in Tobacco Seedlings

ABSTRACT
Light intensity is crucial for plant growth and often fluctuates on a small time scale due

to altering climate conditions or sunflecks. Recently, we performed a study that looked into
the growth effect of a sudden elevation of light intensity on Nicotiana tabacum seedlings.1
It was shown that an increase in light intensity leads to a pronounced increase of
root-shoot-ratio as root growth reacts strongly and rapidly to an increase of light intensity.
In transition experiments from low (60 µmol m-2 s-1) to high (300 µmol m-2 s-1) light
intensity, root growth increased by a factor of four within four days, reaching the
steady-state level measured in plants that were cultivated in high-light conditions. During
the first three hours after light increase, strong fluctuations of the velocity of the root tip
were observed that were putatively caused by a superposition of hydraulic and
photosynthetic acclimation to the altered conditions. Experiments with externally applied
sucrose and with transgenic plants having reduced capacity for sucrose synthesis
indicated clearly that increasing light intensity rapidly enhanced root growth by elevating
sucrose export from shoot to root.

Root growth is closely related to carbon import and hence to light conditions at the
shoot. Carbon gain in roots is realized predominantly by import from the shoot via the
phloem, while the major loss of root carbon occurs via respiration associated with growth
and ion uptake.2 A number of studies have investigated differences in root growth between
plants acclimated to low- or high-light environments (e.g. refs. 3–5) or between plants
growing with variable external sucrose supply.6,7 A key factor directly connecting the
irradiation of the shoot and the elongation of root tips is the local hexose concentration,
which correlates very well with growth rates of individual roots of a given species.7,8 An
increase in the sugar content of root tissue promotes growth of primary and secondary
roots without affecting branching patterns or overall root architecture.9

While a large amount of data on the reaction of overall root growth to different
steady-state light conditions is available, much less is known about the temporal dynamics
of the acclimation process of root growth during short-term fluctuations of light intensity,
which occur naturally on cloudy days, in sunflecks, in gaps of forest stands or in other
heterogeneous natural growth settings. Recent studies using high-resolution, automated
image processing growth monitoring methods have shown that alterations in root growth
can take place within less than an hour in reaction to changes in various environmental
factors such as temperature or nutrient availability.10-12 Hence, we investigated the
question whether a change in shoot light environment could also induce similarly rapid
reactions of root growth, using a custom-made near-infrared time-lapse imaging setup.1,10

In our study, Nicotiana tabacum seedlings were cultivated on agar-filled Petri dishes that
contained all essential mineral nutrients. When seedlings were exposed to high light
intensity (300 µmol m-2 s-1), they showed a four times stronger root growth activity
compared to plants grown at low light intensity (60 µmol m-2 s-1; 1). Shoots were also
growing stronger when exposed to high light, but the response was far less pronounced
than the response of roots. This led to a much higher root-shoot-ratio in plants from high
light treatment compared to plants from low-light treatment (Fig. 1). The effect of light
intensity on root-shoot-ratio is discussed controversely in the literature and seems to
depend also on other environmental factors and on the species.13,14

The distribution of relative elemental growth rates along the root growth zone did not
depend on the light treatment in our experiment, indicating that the relation between
tissue, which is located in the meristematic zone, and tissue, which is located in the
elongation zone, remains constant. This is in agreement with the findings of Muller et al.15

Another important feature of the response dynamics of roots towards increased light
intensity was that strong reactions were observed immediately. During the first 30 minutes
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in high light, the velocity of the root tip of plants, that were acclimated
to low light, decreased by 15 to 20 %, which was probably caused
by a sudden increase of transpiration and a transient loss of turgor
pressure. During the subsequent 2.5 hours, wild-type plants showed
an oscillating increase of growth activity. Transgenic plants with
decreased sucrose-6-phosphate phosphatase activity16 did not show
such oscillating growth behaviour and increased growth much less in
response to elevated light intensity. This result and the fact that
isolated root systems, from which the shoot was clipped off, were
able to retain growth activity if sucrose was present in the agar
medium led to the conclusion that sucrose is the key regulatory
element in root growth response to increased light.

Apart from their role as material growth substrates, carbohydrates
affect growth by playing an important role as signal molecules in
feedback mechanisms of gene regulation. Sucrose acts as signal
molecule in source-sink relations throughout all stages of plant
development17,18 and can modulate the expression of a large number
of genes.19,20 Sucrose and glucose can up-regulate growth-related
genes and downregulate stress-related genes21 demonstrating clearly
their key function as signalling molecules for light-acclimation
processes. Our results show, that root-shoot-ratio is obviously an
important component of light acclimation that is regulated by
sucrose.
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Figure 1. Root-shoot-ratio of Nicotiana tabacum
seedlings from different light treatments. (A) Ratios
based on fresh weight (FW) of plants that were
exposed for 18 d to constant light intensities (60 or
300 µmol m-2 s-1) or were exposed to 60 µmol m-2

s-1 for 14 d and thereafter to 300 µmol m-2 s-1

(60–300) for 4 d (mean value ± SE, n = 5). 
(B and C) Images of typical plants (18 d after
germination) cultivated on agar-filled Petri dishes
with shoot outside in 60 µmol m-2 s-1(B) and 
300 µmol m-2 s-1 (C), respectively. For more details
of cultivation method see Nagel et al. (ref. 1).




