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The transition metal copper is essential for all organisms 
yet excess copper is toxic because of production of free radicals 
via its free form. Therefore, the levels of copper are precisely 
regulated in a cell. Under copper depleted conditions, the expres-
sion of Cu/Zn superoxide dismutase (SOD) is downregulated 
and its function is compensated by Fe SOD in chloroplasts 
of higher plants. We presented evidence that a microRNA, 
miR398, is involved in this downregulation of Cu/Zn SOD 
genes in Arabidopsis thaliana when grown at low copper  
levels, corresponding to less than 1 mM Cu in tissue culture media. 
However, a green alga, Chlamydomonas reinhardtii, adjusts to 
copper depletion by modifying the photosynthetic apparatus from 
copper containing plastocyanin to iron containing cytochrome c6.  
During evolution plants modified one of the main strategies to  
respond to copper deficiency probably to adapt to different metal 
environments.

Copper is an essential micronutrient and is involved in several 
metabolic processes.1 In higher plants, the most abundant copper 
protein is plastocyanin, which is involved in the photosynthetic  
electron transport in the thylakoid lumen of chloroplasts. Another 
major copper protein, Cu/Zn SOD, localizes to the cytoplasm (CSD1), 
stroma of chloroplasts (CSD2) and also peroxisomes (CSD3), and 
is involved in the scavenging of reactive oxygen species.2 Despite its 
physiological importance, excess copper is toxic for plants because 
of its potential participation in the Fenton reaction. To minimize 
the damage by excess copper and also respond to copper deficiency, 
higher plants have several strategies, including the regulation of copper 
uptake in root cells,3 strict copper trafficking via P‑type ATPases and 
copper chaperones4‑9 or regulation of the levels of copper proteins  
in response to a change in the metal availability.10,11 In addition 
plants respond to copper deficiency by expressing the alternative iron 
proteins which complement the function of copper proteins.12

Among photosynthetic eukaryotes, the unicellular green alga, 
Chlamydomonas reinhardtii, is best studied with respect to the 
molecular mechanism of copper homeostasis.13 Under low copper 
conditions, Chlamydomonas degrades plastocyanin and its function 
is replaced by cytchrome c6 containing iron.12 A transcriptional factor, 
Crr1, plays a pivotal role in switching the photosynthetic machinery 
and probably also in copper sensing.14 However, higher plants are 
unlikely to encode the functional homolog of the algal cytochrome  
c6.15 How do higher plants respond to copper deficiency?

In Arabidopsis, the expression of CSD1 and CSD2 is downregulated 
in copper deficient conditions.5 MicroRNA, miR398, is involved in 
this downregulation of both Cu/ZnSOD genes.10 While microRNAs 
extensively regulate a variety of developmental processes,16 they are 
also involved in responses to the environmental stresses including 
deficiency in sulfur17 and phosphate.18 miR398 is expressed only in 
low copper conditions10 and directly involved in the degradation of 
CSD1 and CSD2 mRNA.10,19 Consequently, this regulation allows 
limited copper to be preferentially transferred to plastocyanin whose 
expression is independent of the regulation via miR398. Even in the 
absence of the functional homolog of algal cytochrome c6, higher 
plants can sustain photosynthesis in the low copper conditions. 
Meanwhile, the function of CSD2 is replaced by Fe SOD (FSD1). 
This switching between Cu/Zn SOD and Fe SOD takes place at the 
range of 0.1–1 mM CuSO4 in agar‑solidified medium.10 Arabidopsis 
seedlings grown in the soil used in our laboratory express both  
Cu/Zn and Fe SODs (data not shown), suggesting that the soil 
contains copper ion equivalent to the range of 0.1–1 mM in the 
medium. Arabidopsis seedlings can perceive a change in copper 
concentration in the physiological range for maintaining copper 
homeostasis. The rice and poplar genomes encode microRNA which 
is homologous to miR398, suggesting a conserved mechanism by 
which higher plants adapt to copper deficiency.

During evolution from algae to higher plants, one of major 
strategies to adapt to copper deficiency was altered from the system 
switching plastocycnin to cytochrome c6 to that switching Cu/Zn 
SOD to Fe SOD. We are interested in the strategy in a moss, 
Physcomitrella patens, which is a model plant of the primitive land 
plants. Based on the genome information (genome.jgi‑psf.org//
Phypa1_1/Phypa1_1.home.html), the P. patens genome encodes at 
least three Cu/Zn SODs, two chloroplast forms and one cytosolic 
form. Expression of these CSD genes was analyzed in P. patens cultured 
on the agar medium containing various concentrations of CuSO4 
(Yamasaki et al., unpublished data). Both RT‑PCR and protein blot 
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analysis indicate that the gene expression is differently regulated 
across the boundary existing between 0.05 mM and 0.1 mM CuSO4.  
In contrast, the plastocyanin gene is constitutively expressed at any 
copper concentrations, as in Arabidopsis. However, a genome wide 
analysis of microRNA has not identified the microRNA similar to 
Arabidopsis miR398 in the P. patens genome. It is possible that the 
expression of P. patens CSDs is regulated at transcriptional level. The 
P. patens genome is unlikely to encode a functional homolog of algal 
cytochrome c6, and plastocyanin may be essential for photosynthesis 
even under copper deficient conditions. Taken together all the  
information, P. patens is likely to respond to copper deficiency with 
the similar strategy of higher plants, rather than that of algae.

Information from three model plants may not be sufficient to 
conclude something definitively, but we hypothesize that plants 
acquired the higher plant‑type strategy to respond to copper  
deficiency in the early evolution of land plants (Fig. 1). This is  
probably related to the evolutionary event that plastocyanin rather 
than cytochrome c6 was fixed as an electron carrier for photosynthetic 
electron transport of land plants. Plastocyanin is also essential for  
the oceanic diatom Thalassiosira oceanica, although other coastal 
species lack plastocyanin and rely on the function of cytochrome  
c6.20 In the open sea, iron levels are very low and copper is relatively 
more available. The low availability of iron may have led to a selection 
for the use of plastocyanin in both the land plants and in T. oceanica. 
In the land plants, which can also express a Cu/Zn SOD this could 
have lead to the evolution of the regulation of SOD genes. Unlike 
Chlamydomonas, the land plants do not use a copper‑dependent 
iron uptake system,21 which is well conserved including animals, 
and this may allow plants to save copper for photosynthesis. How 
did the higher plants incorporate the function of microRNA into the  
regulatory process and how is the regulation via the microRNA 
related to the other strategies for metal homeostasis? Characterization 
of three model plants, Chlamydomonas, P. patens and Arabidopsis, 
may lead to answers to these questions.
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Figure 1. Adaptations to respond to variable copper supply in plants. When 
copper is limiting, Chlamydmonas degrades plastocyanin (PC) and its func-
tion is replaced by cytochrome c6 (CYC6). In contrast to this algal strategy, 
Arabidopsis switches from the use of Cu/Zn SOD to iron SOD in response 
to copper deficiency and this switch involves the function of miR398. The 
strategy of Physcomitrella patens is likely to be similar to that of Arabidopsis, 
although the involvement microRNA is presently unclear.


