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Abstract
Among the various rhizospheric interactions, plant root‑microbe interactions are very 

important both economically and ecologically. The interaction of plant roots with plant 
growth promoting rhizobacteria (PGPR) have been studied in case of symbiotic organ-
isms. However, the knowledge on interaction with other PGPRs such as biocontrol Bacillus 
sps. is vastly unexplored. Especially the complex root surface chemistry and its effect on 
modulating the bacterial growth and association with the root system has not been investi-
gated. Recently, by adopting a systematic stepwise experimental approach we unraveled 
the importance of root plane chemistry on the colonization and biofilm formation by  
B. subtilis, an important biocontrol‑PGPR. This study may further increase our under-
standing in the field of rhizosphere biology and area of root secretions and their possible 
role in plant microbe interactions.

Rhizosphere, the region around the roots harbor wide array of microbial populations, 
which may be beneficial, neutral or detrimental to plant growth. The reason for this effi-
cient colonization and the presence of increased microbial populations has been ascribed 
to the nutrient rich environment of the rhizosphere. It has been reported that nearly 40% 
of total plant photosynthates are secreted through root exudates.1 The studies appreci-
ating the role of root exudates in rhizospheric interactions have been beginning to appear. 
Among the different groups of microbes which colonize the rhizosphere and the root 
surface, the plant growth promoting rhizobacteria (PGPR) are a class, which promotes 
plant growth.2 The plant growth promotion by such PGPRs is primarily rendered by 
their ability to produce phytohormones, improve the nutrient uptake and protection 
from pathogenic microorganisms.3 The mechanism by which the biocontrol‑PGPR, 
Bacillus subtilis protects plant roots from pathogenic bacteria include biofilm formation 
in addition to antibiotic and surfactin production.4,5 Biofilms are structured community 
of microbial cells encased in a self‑produced polymeric matrix.6 Recent research studies 
have begun to understand and elucidate the genetic pathways controlling the B. subtilis 
biofilm formation.7‑15 No previous study has attempted the question whether, a PGPR, 
B. subtilis is recognized like pathogen through the well‑studied pathogenesis/disease resis-
tance pathways? We employed various plant disease resistance pathway mutants and a 
transgenic line to determine whether A. thaliana can distinguish between a PGPR, such 
as B. subtilis, and a plant pathogenic bacterium. In contrast to our initial speculation, 
this screening step showed that B. subtilis is not recognized as a pathogen by A. thaliana 
roots as it could colonize the roots of all the plant disease pathway mutants studied. This 
result though not fully conclusive indicated that A. thaliana roots interact with the  
B. subtilis through a pathway other than the regular pathogenesis/disease resistance pathways.  
This forms an important clue for the future studies involving the A. thaliana‑B. subtilis 
interactions. However, we observed the non-colonization and suppression of B. subtilis biofilm 
formation on the roots of A. thaliana line NahG (Fig. 1), a transgenic line‑containing gene for 
salicylate hydroxylase, which hydrolyzes salicylic acid and results in the overproduction of 
catechol.16 This suggested that the catechol might be playing a key role in inhibiting the 
B. subtilis colonization and biofilm formation on the NahG root surface. This speculation 
was further tested by studying the effect of catechol on in vitro biofilm formation on 
the abiotic surface and in vivo on the wild type Col‑0 plants which showed the suppres-
sion of biofilm formation under both the conditions. There is a published evidence that 
showed that A. thaliana non-host resistance is compromised in NahG plants in response to 
Pseudomonas syringae pv. phaseolicola 3121.16 However our results showed that the catechol 
acts on B. subtilis through a pathway, which is altogether different from the mechanism 
reported for a pathogenic interaction.16
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The lack of biofilm formation on the NahG root surface and a 
threefold reduction in the B. subtilis cell surface adhesion led us to 
further speculate that the additional inhibition might occur directly 
on the root surface through a specific catechol induced biochemical 
changes. Catechol is a phenolic compound and such compounds are 
known to generate reactive oxygen species (ROS),17 we hypothesized 
that the inhibition might be brought about by the higher titers of 
ROS generated by increased concentrations of catechol on NahG 
roots. In accordance with our hypothesis the NahG root surface 
stained and imaged for ROS showed higher ROS generation when 
compared to all other mutants and wild type Col‑0.18 Similarly, a 
significantly higher titres of surface and exuded ROS production was 
observed in NahG when compared to Col‑0. However, the role of 
ROS was further conclusively established when the biofilm formation 
was restored in the NahG roots treated with ascorbic acid, a ROS 
quencher. Further, we hypothesized that the suppressed binding of 
B. subtilis due to altered root surface chemistry, might be occurring 
through the direct suppression of transcriptional operons required for 
biofilm formation in B. subtilis. In consistent with all the previous 
results direct catechol treatment resulted in a significant reduction 
in the transcription levels of the operons yqxM and epsA which 
are required for biofilm formation in B. subtilis. Finally, with these 
transcriptional profiling studies, we showed that the suppression of  
B. subtilis biofilm formation on NahG root surface is due to the pres-
ence of catechol on the NahG root surface (and in the surrounding 
area), resulting in ROS mediated down regulation of genes required 
for biofilm formation in Bacillus subtilis.

Our findings established the importance of root surface chemistry 
and secretions in colonization and biofilm formation of B. subtilis. 
There is a possibility that the biocontrol mechanism driven by biofilm 
formation is regulated by in planta redox potential in the rhizosphere. 
It is clear, however, that additional information is required to further 

clarify the role of gene expression in biofilm formation and efficacy. 
Studies in rice and Arabidopsis systems have demonstrated that higher 
catechol levels result in the production of superoxides and H2O2 leading 
to increased ROS generation.16,19 Further mechanistic studies are 
required to elucidate the role of catechol and catechol generated ROS 
in the rhizospheric interactions such as plant‑plant and plant‑microbe 
and microbe‑microbe interactions. In addition, research studies 
focusing on the elucidation of novel plant genes that are detrimental 
in B. subtilis colonization on A. thaliana will shed some more light on 
this beneficial interaction.
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Figure 1. Confocal microscopy images of Arabidopsis roots co-cultivated 
with B. subtilis strain FB-17 showing dense biofilm formation on the surface of  
Col-0, cpr6-1, etr1-1, jar1-1, ein4-1, less biofilm formation on cpr1-1 pad4-1, 
eds1-1, npr1-1, npr/ndr double mutant compared to the NahG roots.
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