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Abstract
When asked to list semantic features for concrete concepts, participants list many features for some
concepts and few for others. Concepts with many semantic features are processed faster in lexical
and semantic decision tasks (Pexman, Holyk, & Monfils, 2003; Pexman, Lupker, & Hino, 2002).
Using both lexical and concreteness decision tasks, we provided further insight into these number-
of-features (NoF) effects. We began by replicating the effect using a larger and better controlled set
of items. We then investigated the relationship between NoF and feature distinctiveness and found
that features shared by numerous concrete concepts such as <has four legs> facilitate decisions to a
greater extent than do distinctive features such as <moos>. Finally, we showed that NoF effects are
carried by shared visual form and surface, encyclopedic, tactile, and taste knowledge. We propose a
decision-making account of these results, rather than one based on the computation of word meaning.

People use language every day to convey messages, and inherent in our ability to understand
these messages is our ability to compute the meaning of individual words. The computation
of word meaning has been studied from a number of perspectives, including conceptual and
linguistic development, the ability of normal adults to produce and understand language,
neuropsychological impairments following brain injury, and computational modeling of all of
these phenomena. One factor that has emerged as important in understanding the computation
of word meaning is the richness of a word's semantic representation. Specifically, in many
experimental tasks, participants respond more quickly to words having richer semantic
representations (Borowsky & Mason, 1996; de Groot, 1989; Hino & Lupker, 1996; James,
1975; Pexman, Lupker, & Hino, 2002). The goal of the present research is to further our
understanding of the nature of word meaning by investigating how a particular aspect of
semantic richness (the number of features a concept has) influences performance in two
speeded tasks: lexical and concreteness decision. Study 1 is a replication of number-of-feature
(NoF) effects using extremely carefully controlled materials. Studies 2 and 3 establish that
feature distinctiveness matters in that the number of a concept's features that are shared by
other concepts is an important determinant of NoF effects. Study 4 takes a modality-specific
approach and shows that shared visual form and surface features, encyclopedic features, tactile
features, and taste features underlie NoF effects. Finally, we argue that NoF effects are driven
primarily by decision processes, rather than the activation of meaning per se.
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Semantic Richness
Semantic richness an important topic of study because understanding its impact has
implications for theories of semantic memory. Some models of semantic memory assume a
localist representation of concepts whereby the meaning of a word such as robin is represented
by a single node in a network (Collins & Quillian, 1969; McNamara, 1992; Page, 2000). Other
models, however, assume a distributed representation of concepts whereby a word's meaning
is represented over multiple nodes in a network, each of which can be activated to varying
degrees (Masson, 1992; Plaut & Shallice, 1993). Although the debate between local versus
distributed representations is longstanding, with respect to semantic representations the balance
of evidence appears to have tipped in favor of distributed models. (In fact, Page is careful to
describe localist models as being characterized by the presence of localist representations,
rather than the absence of distributed representations, thus blurring the distinction between the
two types of models.) In general, the fact that words vary in terms of their degree of semantic
richness, and the finding that semantic richness influences processing, seem more consistent
with a distributed view of semantic memory because distributed representational systems more
naturally encode graded representations. Furthermore, a distributed feature-based view of
semantic memory leads to studying variables that would not be important in a localist scheme.

Semantic richness correlates with two central properties of word meaning, ambiguity and
concreteness. Some words such as bowl are ambiguous in that they have multiple meanings,
whereas others such as tent are unambiguous in that they have a single meaning. It has been
assumed that ambiguous words have richer semantic representations because multiple
meanings must be represented. Using lexical decision and naming tasks, Hino and Lupker
(1996) found an ambiguity advantage whereby ambiguous words were responded to more
quickly than unambiguous words (see also Jastrzembski, 1981; Kellas, Ferraro, & Simpson,
1988; Rubenstein, Garfield, & Millikan, 1970), suggesting that the meanings of ambiguous
words may be computed more rapidly.

Interestingly, Hino, Pexman and Lupker (2006) demonstrated that an ambiguity advantage
does not arise in a semantic categorization task. Logically, however, the disappearance of the
ambiguity advantage in these types of tasks should not be surprising given the decision-making
problems created by ambiguous words. That is, the multiple meanings of a word typically do
not support the same semantic decision (e.g., bat - is it an animal?), creating competition during
the decision-making process. What this result does underline, therefore, is the importance of
considering the impact of decision-making processes in many of these word recognition tasks,
a point that is central to this article.

A second relevant finding is that response latencies for concrete words such as robin are shorter
than for abstract words such as justice in tasks such as lexical decision (Binder, Westbury,
McKiernan, Possing, & Medler, 2005) and naming (Strain, Patterson, & Seidenberg, 1995). A
number of researchers have argued that this difference can be explained in terms of richer
semantic representations for concrete words (Paivio, 1986; Plaut & Shallice, 1993).

An Empirically-based Featural Representation of Word Meaning
One way in which semantic richness effects has been studied is in terms of featural information.
Although feature-based representations have proven fruitful in many ways, often their
implementations are based on computer or experimenter-generated semantic representations
and thus lack validation. To generate feature-based representations with increased
psychological validity, a first approximation is to ask people what they know about the things
to which various words refer. Of course, people cannot introspectively tell us everything that
exists in their conceptual representations, but we can assume that what they do tell us provides
a window into their actual underlying conceptual representations (Medin, 1989).
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McRae, Cree, Seidenberg, and McNorgan (2005) adopted just such an approach. For both
living (robin) and nonliving (chair) things, they had participants list descriptive features. For
example, for robin, participants listed features such as <has wings>, <flies>, <eats worms>,
and <has a red breast>. In total, 725 participants contributed to these semantic feature
production norms for 541 concepts. This large set was used to define a psychological semantic
space consisting of over 2,000 features, and enabled the calculation of many statistics such as
correlations between features and feature distinctiveness. In conjunction with various other
measures (e.g., word frequency, word length, conceptual familiarity, orthographic and
phonological neighborhoods), these empirically-derived conceptual representations provide a
rich basis for testing theories of semantic representation and computation.

In McRae et al.'s (2005), each word refers to a concrete object (living or nonliving) and each
has, as much as possible, a single meaning.1 This minimizes potential differences among
concepts, and allows a somewhat different definition and operationalization of semantic
richness, the number of features (NoF) a concept is deemed to have. Importantly for this article,
the norms also allow us to investigate the impact of the types of features that may drive these
effects. That is, it may be the case that semantic richness effects are not simply due to additional
features; rather, the types of features may matter. Furthermore, the types of features may
interact with the manner in which the information is being used. In terms of cognitive
experiments, the types of features may interact with the task under consideration.

Probing NoF Effects
Using McRae, de Sa, and Seidenberg's (1997) norms (which are a subset of McRae et al.'s,
2005, norms), Pexman et al. (2002) operationalized semantic richness as the number of features
listed by participants. If richness underlies the processing advantage observed for ambiguous
versus unambiguous words, and abstract versus concrete words, then the same advantage
should be found when comparing words that differ in number of features.

Pexman et al. (2002) generated two sets of concepts using the 190 concepts in McRae et al.'s
(1997) norms. One set contained 25 low number-of-features (low NoF) concepts, and the other
contained 25 high number-of-features (high NoF) concepts. They also generated two sets of
50 nonword filler items. The first contained pronounceable nonwords whose spelling and sound
do not correspond to any English word, such as meap, whereas the second contained
pseudohomophones, nonwords whose spelling does not correspond to any English word, but
whose sound does, such as keap. When the low and high NoF concepts were combined with
the pronounceable nonwords, lexical decision latencies were shorter for high than for low NoF
concepts. This effect was larger when pseudohomophones were used. Similar results were
obtained when participants named the same low and high NoF items aloud.

Pexman et al. (2003) investigated the NoF effect using tasks more directly involving semantics.
With the same stimuli described above, participants were faster to read high NoF words than
low NoF words in a self-paced reading task when the sentence was incongruent (“After a heavy
snowfall, Joel has to wear his airplane”), but not when it was highly congruent (“After the
crash, Bob was nervous about getting on an airplane”), nor moderately congruent (“When I
go home, I tend to travel by airplane”). In addition, using all 190 concrete concepts available
at the time in McRae et al.'s (1997) norms, Pexman et al. had participants decide whether each

1Although ambiguous concept names were avoided as much as possible, some do exist in the norms given that such a large proportion
of English words are ambiguous. Noun-verb ambiguities such as hammer were dealt with by asking participants in the norming task to
focus on the noun meaning, and the resulting features show that they did. Some noun-noun ambiguities were identified a priori, and a
disambiguating cue was provided (e.g., bat - baseball and bat – animal). However, none of these items were used in the current studies.
For ambiguities not identified by the researchers a priori (e.g., due to slang as in pig), participants rarely provided features relevant to
the other meaning.
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word referred to a concrete object or to something abstract (e.g., justice). NoF was a significant
predictor of decision latencies for concrete objects.

These findings invite questions regarding precisely what aspects of concepts are driving the
NoF effects. That is, do all features matter equally? Do some types of features such as visual
parts, functions, or characteristic behaviors, matter more than others? A number of recent
studies demonstrate that not all types of features are created equal. For example, differential
influences of whether a feature is distinctive to a concept, such as <moos> for cow, or is shared
by many concepts, such as <has legs>, have been shown. Distinctiveness effects have been
found in feature verification tasks (Cree, McNorgan, & McRae, 2006; Randall, Moss, Rodd,
Greer, & Tyler, 2004), picture naming (Humphreys, Riddoch, & Quinlan, 1988), and semantic
categorization of pictures (Riddoch & Humphreys, 1987). Given that distinctiveness matters
in a number of tasks, it is possible that features influence NoF effects differentially depending
on whether they are distinctive or shared. Furthermore, as is discussed in more detail in the
introduction to Study 2, the influence of this factor varies systematically as a function of the
task. Therefore, in Studies 2 and 3, we tested whether the NoF effect depends on whether
features are distinctive to a particular concept or are shared among concepts.

A second factor that has been shown to be important in numerous recent studies of semantic
memory involves modality-specific aspects of concepts. That is, rather than concepts being
represented in an amodal store in which information regarding the perceptual experience is
abstracted away, recent evidence suggests that concepts are distributed across brain regions
that represent various perceptual modalities. Functional magnetic resonance imaging studies
demonstrate that modality-specific aspects of concrete concepts are activated when a picture
is viewed or a word is read (Goldberg, Perfetti, & Schneider, 2006; Martin & Chao, 2001).
Behavioral experiments have provided further evidence that concepts are distributed across
modality-specific informational and neural regions (Pecher, Zeelenberg, & Barsalou, 2003).
Modality specificity is also an important aspect of most accounts of category-specific semantic
deficits (Garrard, Lambon Ralph, Hodges, & Patterson, 2001; Simmons & Barsalou, 2003).

Using linguistically-based features for establishing factors such as the NoF seems, at first blush,
to correspond to assuming amodal representations. However, features can be classified as
belonging to specific perceptual modalities, and thus be used as a basis for modality-specific
representations. For example, Cree and McRae (2003) classified all of the features in McRae
et al.'s (2005) norms into a nine-way feature type taxonomy based on the current state of the
art in neuroscience and cognitive neuropsychology. These feature types included, for example,
visual form and surface features, tactile features, functional features, taste features, and
encyclopedic features. Their relative salience was crucial in accounting for the behavioral
trends observed in patients with category-specific semantic deficits. Given the centrality of
modality-specific aspects of concepts to conceptual processing, it seems likely that features
indexing different types of knowledge may play differential roles in the facilitation found in
studies of NoF effects. For example, people's knowledge about how a living or nonliving thing
looks might be particularly important information, and thus play a critical role. Therefore, in
Study 4, we analyzed whether features that correspond to different types of knowledge
contribute differentially to NoF effects. These analyses provide insight into both NoF effects
and the nature of semantic representations.

Study 1
The purpose of Study 1 was to establish further the baseline empirical phenomena by testing
whether Pexman et al.'s (2002; 2003) results replicate in both lexical and concreteness decision
tasks using improved sets of items. A close investigation of the items used in Pexman et al.'s
(2002; 2003) studies reveals that some variables known to influence word processing (word
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frequency and word length) were not perfectly equated between the high and low NoF word
sets, and that the differences favored the high NoF items. Although Pexman et al. addressed
this issue by partialing out the influence of these variables using multiple regression, it may
be that the observed NoF effects were due to the combined influence of these confounded
variables. It was possible to construct larger lists of concepts (64 versus 25) that are better
balanced on a larger set of variables because there now exists a larger set of norms (McRae et
al., 2005, containing 541 concepts vs. McRae et al., 1997, containing 190 concepts).

Study 1A
Method
Participants: Seventeen undergraduate students at the University of Western Ontario received
partial course credit for their participation. In all experiments reported herein, participants had
either normal or corrected-to-normal visual acuity and were native English speakers.

Materials: Two sets of words referring to concrete objects were generated from McRae et al.'s
(2005) norms, 64 low and 64 high NoF concepts (see Appendix A). High NoF concepts
contained a significantly greater number of features than did low NoF concepts, t(126) = 29.67,
p < 0.001. NoF can be calculated by either including or excluding taxonomic features (e.g.,
<is an animal>, <is a vegetable>), which seem qualitatively different than the vast majority of
other features, such as parts, colors, functions, characteristic behaviors, and so on. Therefore,
we excluded taxonomic features from the counts in the present analyses. Note that in Pexman
et al.'s (2002; 2003) studies, NoF was calculated including taxonomic features, but it was later
found that NoF without taxonomic features had a stronger relationship to decision latencies
and decision errors in a concreteness decision task (Pexman & Hope, 2006).

The two sets of items were matched extremely closely on variables known to influence lexical
and concreteness decisions (see Table 1). These included word frequency, which was computed
using the natural logarithm of the singular plus plural counts taken from the British National
Corpus (BNC) online search engine (Burnard, 2000). Although Pexman and colleagues
computed their frequencies using the Kučera and Francis (1967) corpus, we chose the BNC
because it is based on a larger corpus (89.7 vs. 1 million words) and is more recent (2000 vs.
1967). Concept familiarity was measured by asking 20 participants to rate “How familiar are
you with the thing that the word refers to?” on a 9-point scale, with 1 corresponding to not at
all familiar, and 9 corresponding to highly familiar. Number of letters, number of phonemes,
number of syllables, and orthographic neighborhood size (Coltheart, Davelaar, Jonasson, &
Besner, 1977) were computed using the N-Watch program (Davis, 2005).

The concepts were also equated on semantic density as calculated from McRae et al.'s
(2005) norms. In the norms, each feature is a vector of production frequencies (the number of
participants listing that feature for each specific concept) across the 541 concepts. Proportion
of shared variance for each pair of features was calculated by squaring the correlation between
the vectors for the two features. Only features occurring in three or more concepts were
included to attempt to avoid spurious correlations. A concept's semantic density was calculated
as the sum of the proportion of shared variances for each pair of features that are included in
that concept. Thus, semantic density provides a measure of the degree to which a concept's
features are intercorrelated. Finally, because there is evidence that different categories of
concrete objects are processed differentially (Laws & Gale, 2002), we also matched the two
groups according to the following category breakdown: creatures, fruits and vegetables,
nonliving things, and musical instruments.
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Filler items consisted of 128 pronounceable nonwords whose spelling and sound did not
correspond to an English word (lerve). The nonwords and low and high NoF concept names
were matched on mean number of letters so that length did not cue the response.

Procedure: Participants were tested individually using PsyScope (Cohen, MacWhinney, Flatt,
& Provost, 1993) on a Macintosh computer equipped with a 16-inch monitor and a CMU button
box (which provides decision latencies with accuracy to the nearest ms). Letters were
approximately 0.5 cm high, black, and presented on a white background. One item was
presented at a time and participants were asked to decide whether the presented item referred
to an English word or not. They used the index finger of their dominant hand for a ‘yes’ response
and the index finger of their non-dominant hand for a ‘no’ response. Decision latencies were
measured from stimulus onset to the onset of the button press. Participants were instructed to
respond as quickly and accurately as possible.

Participants first completed 30 practice trials with verbal feedback concerning incorrect
decisions. Items presented during the practice trials did not appear in the test trials. On each
trial, the item was presented until the participant made a decision. The intertrial interval was
1500 ms. Test trials were identical to the practice trials except that no feedback was provided
and there was a break after every 50 items. Items were presented in random order. The
experiment took approximately 25 minutes.

Results and Discussion—Subject (t1) and item (t2) analyses were performed on decision
latencies and the square root of the number of errors (Myers, 1979). Errors were removed from
decision latency analyses (4.6% of trials). Correct decisions exceeding 3 standard deviations
above the grand mean for the target words were replaced with the cutoff value (1.8% of trials).
NoF (high vs. low) was within-subjects (paired t-test) and between-items (independent t-test).
All p-values assume a two-tailed distribution. Mean decision latencies and error rates are
presented in Table 2.

Lexical decision latencies to high NoF concepts were 30 ms shorter than to low NoF concepts,
t1(16) = 7.37, p < .00001, t2(126) = 2.34, p < .05, minF′(1,141) = 4.97, p < .05. Participants
made 3.7% fewer errors on high NoF concepts, t1(16) = 5.99, p < .0001, t2(126) = 2.03 p < .
05, minF′(1,142) = 3.69, p < .06. For nonwords, the mean decision latency was 756 ms, and
the mean error rate was 3.7%. In summary, using this improved set of items, we replicated
Pexman et al.'s (2002) NoF effect in the lexical decision task.

Study 1B
Method
Participants: Seventeen undergraduate students at the University of Western Ontario received
partial course credit for their participation.

Materials: Target items were identical to those in Study 1A. Filler items were 128 abstract
concepts matched with the target items on mean number of letters. Although some abstract
filler items were noun/verb ambiguous (respect), they were chosen to have a salient noun
meaning.

Procedure: The procedure was identical to that in Study 1A except that for each presented
word, participants were asked to respond ‘yes’ if the thing to which the word referred was
touchable (robin) and ‘no’ otherwise (justice).

Results and Discussion—The analyses were identical to those in Study 1A. Errors were
removed from the decision latency analyses (3.9% of trials). Correct decisions that exceeded
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3 standard deviations above the concrete concept grand mean were replaced with the cutoff
value (1.4% of trials). Mean decision latencies and error rates are presented in Table 2.

Concreteness decision latencies to high NoF concepts were 29 ms shorter than to low NoF
concepts, t1(16) = 4.27, p < .0001, t2(126) = 2.51, p < .05, minF′(1,118) = 4.68, p < .05.
Participants also made 3.5% fewer errors on high NoF concepts, which was significant by
subjects and marginal by items, t1(16) = 5.84, p < .0001, t2(126) = 1.80, p < .08, minF′(1,141)
= 2.95, p < .09. The mean decision latency for abstract concepts was 706 ms, and the mean
error rate was 4.7%. Thus, Study 1B replicated the NoF effect using a concreteness decision
task with an extremely tightly controlled and large set of items.

In conjunction with Pexman et al.'s (2002; 2003) results, the present results provide strong
evidence supporting the claim that decisions in speeded tasks are faster for concepts with a
greater number of semantic features. In Studies 2 and 3, we examined the NoF effect more
closely. Given previous results, described more fully below, it is quite possible that the NoF
effect is mediated by feature type. Specifically, the possibility exists that features that are shared
by many concepts (<made of metal>) versus those which are highly distinctive to a concept
(<moos>) may be differentially responsible for NoF effects.

Shared versus Distinctive Features: In their investigation of the factors underlying trends in
the performance of category-specific deficit patients, Cree and McRae (2003) included a
measure of feature distinctiveness (see also Garrard et al., 2001). At one end of the
distinctiveness dimension lie highly shared features such as <has four legs> and <is hard> that
occur in many concepts. On the other end lie distinctive features such as <moos> and <oinks>
that occur in few concepts (or even just one). Shared features denote commonalities among
concepts, and thus indicate similarities among concepts. In contrast, distinctive features denote
differences, and thus help people to discriminate among concepts. Cree and McRae defined a
feature as shared if it was listed for more than 2 of the 541 concepts, and distinctive if it was
listed for only 1 or 2 concepts. They also computed feature distinctiveness as a continuous
dimension (1/number of concepts in which a feature occurred), but for explanatory purposes,
we focus on the shared versus distinctive binary measure.

Cree and McRae (2003) showed that this measure of distinctiveness was a key part of
understanding behavioral trends across category-specific deficit patients. These deficits are
typically observed in tasks such as picture naming, word-to-picture matching, defining, and
naming from definition, all of which require distinguishing a concept from among similar
concepts. For example, a patient can only identify something as a zebra rather than a horse in
a picture naming task if their knowledge about what distinguishes zebras from horses (e.g.,
black and white stripes) is preserved. Cree and McRae computed the proportion of distinctive
features for a large number of concepts. Assuming that damage to features (distinctive vs.
shared) is equiprobable, the implication is that concepts with lower proportions of distinctive
features should be impaired to a greater extent than those with higher proportions in these types
of tasks. Indeed, the degree to which concepts' features are distinctive accounted for the degree
of impairment across multiple categories.

Analogous results have been found with normal adults. Humphreys, Riddoch, and Quinlan
(1988) found that participants were faster to name pictures of objects belonging to categories
whose exemplars are structurally dissimilar (clothing and furniture) versus structurally similar
(insects, fruits, and vegetables). In feature verification tasks, Cree, McNorgan, and McRae
(2006) found that participants were faster to verify a concept-feature pair when the feature was
distinctive than when it was shared. They simulated these results using an attractor network
and found that distinctive features had stronger connections to and from other features of the
same concept than did shared features, which provides a plausible basis for the human results.
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There is also, however, research showing what superficially appears to be the opposite pattern,
an advantage for items that share many features with other items. For example, typical
exemplars, such as robin for the category bird, which possess a greater number of shared
features than do atypical exemplars such as ostrich, are responded to more rapidly in a category
verification task (Smith, Shoben, & Rips, 1974). Similarly, in contrast to their findings using
picture naming, Riddoch and Humphreys (1987) found that participants were faster to make
broad-level classifications (living vs. nonliving) for pictures of objects belonging to categories
whose exemplars are structurally similar.

In resolving this apparent contradiction, what is important to note is that broad semantic
classification tasks do not require people to make distinctions among category exemplars, and
it is only in tasks in which participants are not required to make such distinctions that concepts
with large numbers of shared features show a processing advantage. In essence then, the
processing advantages for distinctive versus shared feature types are task dependent.
Distinctive features make it easier to respond when the task requires distinguishing an item
from among similar items, such as when naming the picture of an object. Shared features,
particularly those consistent with the decision required, make it easier to respond when a more
broad-based judgment is called for, such as deciding whether a robin is a living thing.

Concreteness decision would appear to be a task that calls for a more broad-based judgment.
Thus, one might expect that shared features would be more important than distinctive features
in that task. Whether the same is true in lexical decision depends, first of all, on the extent to
which semantic information is used. If semantic information does play a significant role in
lexical decision, then the type of semantic information that is activated may matter. In
particular, if the sets of activated features are consistent with a large number of concepts, that
fact may provide good evidence that the letter string corresponds to a real word. As a result,
shared features may contribute more than distinctive features to the NoF effect in the lexical
decision task as well.

In our Study 1 stimuli, low NoF concepts averaged 9.0 features, whereas high NoF concepts
averaged 15.7 features. Breaking these totals down, low NoF concepts averaged 2.1 distinctive
and 6.9 shared features, whereas high NoF concepts averaged 5.9 distinctive and 9.8 shared
features. In Pexman et al.'s (2002) studies, low NoF concepts averaged 11.0 features, whereas
high NoF concepts averaged 18.1 features. Low NoF concepts averaged 3.5 distinctive and 7.5
shared features, whereas high NoF concepts averaged 5.9 distinctive and 12.2 shared features.
Because the high and low NoF concepts differed in terms of both distinctive and shared features
in both cases, Study 1 and Pexman et al.'s experiments do not provide insight into their relative
contributions.

One way to investigate the relative contributions of shared versus distinctive features is to
directly contrast the number of each type of feature while holding NoF constant. Another way
is to create high and low NoF conditions by independently manipulating the number of shared
or the number of distinctive features while holding the other type constant. Study 2 used the
former manipulation whereas Study 3 used the latter.

Study 2
The purpose of Study 2 was to investigate whether lexical and concreteness decisions are
systematically influenced when the number of shared versus distinctive features is varied while
holding NoF constant.
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Study 2A
Method
Participants: Twenty-five undergraduate students at the University of Western Ontario
received $10 for their participation.

Materials: Two sets of target words referring to concrete objects were generated from McRae
et al.'s (2005) norms. One set consisted of 55 low number-of-shared-features concepts and the
other consisted of 55 high number-of-shared-features concepts (see Appendix B). High shared-
feature concepts had a significantly greater number of shared features, t(108) = 12.07, p <
0.001. The two sets were matched on the same variables described in Study 1, plus NoF (see
Table 3). Filler items consisted of 110 nonwords, which were a subset of those used in Study
1A and were matched with the target items on number of letters.

Procedure: A lexical decision task identical to that in Study 1A was used.

Results and Discussion—Subject (t1) and item (t2) analyses were performed on decision
latencies and error rates. The independent variable was number-of-shared-features, which was
within-subjects but between-items. Errors were removed from the decision latency analyses
(3.6% of trials). Correct decisions exceeding 3 standard deviations above the grand mean of
the target words were replaced with the cutoff value (1.6% of trials). Mean decision latencies
and error rates are presented in Table 4.

Lexical decision latencies for concepts with a high number-of-shared-features were 11 ms
shorter than for those with a low number-of-shared-features, which was significant by subjects,
t1(24) = 4.60, p < .001, but not by items, t2(108) = 1.07, p > .2, minF′(1,118) = 1.09, p > .2.
The 0.7% difference in error rates was nonsignificant, t1(24) = 1.32, p > .1, t2(108) = 0.30, p
> .7, minF′(1,118) = 0.09, p > .7. The mean decision latency for nonwords was 633 ms, and
the mean error rate was 2.7%.

In summary, although the effect in the lexical decision task was not large, there is evidence
that concepts with numerous shared features are easier to respond to than those with fewer
shared features. This effect may be significant only in the subject analyses for two reasons.
First, the feature type manipulation was a within-subject but between-item manipulation.
Within manipulations are inevitably more powerful than between manipulations. Second, as
alluded to earlier, the lexical decision task is not based solely on semantic knowledge. Instead,
lexical decisions are made on the basis of some combination of orthographic, phonological,
and semantic knowledge, and the influence of these types of information can be modulated by
task parameters (such as the type of nonword foils used). Unless semantic knowledge plays a
major role, one would not expect the impact of a semantic factor like distinctiveness to be
particularly strong. On the other hand, a semantic decision task such as the concreteness
decision task used in Study 1B unambiguously depends on the computation of word meaning,
which should make any NoF effect easier to detect. Therefore, Study 2B used the same stimuli
as Study 2A in a concreteness decision task.

Study 2B
Method
Participants: Twenty-four undergraduate students at the University of Western Ontario
received $10 for their participation.
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Materials: The test items were identical to those used in Study 2A. Filler items consisted of
110 abstract concepts. The fillers were a subset of those used in Study 1B and were matched
with the target items on number of letters.

Procedure: A concreteness decision task identical to that in Study 1B was used.

Results and Discussion—The analyses were identical to those in Study 2A. Errors were
removed from the decision latency analyses (3.8% of trials). Correct decisions that exceeded
3 standard deviations above the concrete word grand mean were replaced with the cutoff value
(1.6% of trials). Mean decision latencies and error rates are presented in Table 4.

Concreteness decision latencies for concepts with a high number-of-shared-features were 42
ms shorter than for those with a low number-of-shared-features, t1(23) = 6.17, p < .00001,
t2(108) = 2.18, p < .05, minF′(1,127) = 4.22, p < .05. The 1.5% difference in error rates was
nonsignificant, t1(23) = 1.10, p > .2, t2(108) = 1.16, p > .2, minF′(1,127) = 0.63, p > .6. The
mean decision latency for abstract concepts was 791 ms, and the mean error rate was 4.8%.
Thus, increasing the number of shared features leads to faster concreteness decisions, with the
size of the effect being greater than in Study 2A with lexical decision.

Obtaining a larger effect in semantic decision is not particularly surprising. Although there was
no difference in effect size between Study 1A with lexical decision (30 ms) and Study 1B with
concreteness decision (29 ms), a number of studies have found stronger effects of semantic
manipulations in semantic rather than lexical decision tasks (Becker, Moscovitch, Behrmann
& Joordens, 1997; Bueno & Frenck-Mestre, 2008). It is clear that participants must retrieve
semantic information in order to decide whether a word refers to something that is concrete or
abstract. In contrast, computation of word meaning is, undoubtedly, less strongly related to
making a word versus nonword decision (Pexman et al., 2002) because orthographic and
phonological information undoubtedly also play a role. Thus, one would expect semantic
effects to be smaller in lexical than concreteness decision tasks.

One question that Study 2 does not allow us to answer is, assuming that the impact of additional
shared features is a processing benefit, what is the impact of additional distinctive features? If
the issue is merely semantic richness, one would expect that adding features, regardless of type,
would speed processing because, in all cases, the result is a richer semantic representation.
However, it is possible that adding distinctive features inhibits certain decisions because as
distinctive features are added to a concept, that concept becomes increasingly less similar to
other concepts. For example, such might be the case in a task such as semantic verification in
which latencies are longest for concepts that are dissimilar to other category members (Rips,
Shoben, & Smith, 1973). In fact, although we have discussed the manipulation in Study 2 as
being a manipulation of shared features, if we reverse the logic and think about these data in
terms of distinctive features, one could argue that distinctive features inhibit decisions. That
is, because each feature was classified as either shared or distinctive, the numbers of shared
and distinctive features are the complements of one another in Study 2. Re-labeling the low-
shared condition as high-distinctive and the high-shared condition as low-distinctive suggests
that decision latencies are longer to concepts with many versus few distinctive features.
Although this interpretation is possible, it is unlikely given that in Study 1 there were, on
average, a greater number of additional distinctive features (3.9) than additional shared features
(2.9) in the high NoF condition and an NoF effect was obtained. Study 3 was designed to
overcome this ambiguity of interpretation.
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Study 3
The purpose of Study 3 was to investigate whether lexical and concreteness decisions are
systematically influenced when the number of shared features and the number of distinctive
features are manipulated while keeping the other constant. Therefore, shared and distinctive
features were independently manipulated creating two separate manipulations of NoF, one
based solely on adding shared features, and the other based solely on adding distinctive features.

Study 3A
Method
Participants: Forty-nine undergraduate students at the University of Western Ontario received
partial course credit for their participation. Four participants were excluded for making more
than 15% incorrect decisions across all items, leaving 45 participants.

Materials: Four sets of 20 concepts were generated from McRae et al.'s (2005) norms (see
Table 5). In the first two sets, the number-of-shared-features was manipulated while holding
constant the number-of-distinctive-features. In the other two sets, the number-of-distinctive-
features was manipulated while holding constant the number-of-shared-features. High NoF,
shared-manipulated concepts had a significantly greater number of shared features when
compared to low NoF, shared-manipulated concepts, t(38) = 18.45, p < 0.001. High NoF,
distinctive-manipulated concepts had a significantly greater number of distinctive features
when compared to low NoF, distinctive-manipulated concepts, t(38) = 16.83, p < 0.001. The
four sets were matched on the same variables described in Study 1. However, note that because
semantic density, which measures the degree to which a concept's features are intercorrelated,
is calculated using only shared features, it was lower for the low NoF, shared-manipulated
condition that contains only 3.1 shared features on average. Filler items consisted of 80
nonwords taken from those used in Study 1 and were matched with the target items on number
of letters.

Note that the two sets of conditions mirror one another. In the shared features manipulated
conditions, there were 6.5 and 6.1 distinctive features on average, with the number of shared
features being low (3.1 in the low NoF items) or high (9.1 in the high NoF items). In the
distinctive features manipulated conditions, there were 6.5 and 6.3 shared features on average,
with the number of distinctive features being low (2.9 in the low NoF items) or high (9.1 in
the high NoF items).

Procedure: A lexical decision task identical to those in Studies 1A and 2A was used.

Results and Discussion—Subject (F1) and item (F2) analyses of variance were conducted
on decision latencies and error rates. The independent variables were type of manipulated
feature (shared vs. distinctive) and NoF (high vs. low), both of which were within-subjects,
but between-item variables. Planned contrasts were used to test for differences among all pairs
of conditions. Errors were removed from the decision latency analyses (3.3% of trials). Correct
decisions that exceeded 3 standard deviations above the grand mean of the target words were
replaced with the cutoff value (1.7%). Mean decision latencies and percent errors are presented
in Table 6.

Decision latencies: Manipulated feature type interacted with NoF by subjects, F1(1,44) = 7.59,
p < .01, F2(1,76) = 1.27, p > .2, minF′(1,99) = 1.08, p > .2. For the planned comparisons, the
halfwidth of the confidence interval of the difference between means was 9 ms. If the halfwidth
is less than the observed difference between means, then the contrast would be significant by
a conventional inferential test. Confidence intervals were computed using the methods
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recommended by Masson and Loftus (2003), using pooled error terms because the error terms
were similar in magnitude. Decision latencies in the low NoF, shared-manipulated condition
were a significant 25 ms longer than in the high NoF, shared-manipulated condition. However,
there was no difference when the number of distinctive features were manipulated (i.e., when
the number of shared features was held constant). In fact, decision latencies in the low NoF,
shared-manipulated condition, which had only 3.1 shared features on average, were
significantly longer than in the other three conditions. There were no significant differences
among those other three conditions, which differed by a maximum of 4 ms.

Collapsed across manipulated feature type, decision latencies were 10 ms shorter for high
(M = 598 ms, SE = 9 ms) than for low NoF concepts (M = 608 ms, SE = 9 ms), which was
significant by subjects, F1(1,44) = 5.65, p < .05, but not by items, F2 < 1, minF′ < 1. Collapsed
across NoF, decision latencies were 10 ms shorter for concepts with distinctive features
manipulated (M = 598 ms, SE = 8 ms) than for those with shared features manipulated (M =
608 ms, SE = 9 ms), which was significant by subjects, F1(1, 44) = 6.37, p < .05, but not by
items, F2 < 1, minF′ < 1. Again, this effect was carried by the condition containing only 3.1
shared features.

Error rates: The interaction between manipulated feature type and NoF was not significant,
F1(1, 44) = 2.26, p > .1, F2 < 1, minF′ < 1. Collapsed across feature type, there was no significant
difference in error rates between high (M = 2.8%, SE = 0.4%) and low NoF concepts (M =
3.8%, SE = 0.6%), F1 < 1, F2 < 1, minF′ < 1. Collapsed across NoF, there was no significant
difference in error rates for distinctive (M = 2.8%, SE = 0.4%) versus shared features
manipulated conditions (M = 3.6%, SE = 0.5%), F1(1, 44) = 1.03, p > .3, F2 < 1, minF′ < 1.
The mean decision latency for nonwords was 756 ms, and the mean error rate was 6.4%. We
defer discussion of these results until the discussion of Study 3B.

Study 3B
Method
Participants: Forty-seven undergraduate students at the University of Western Ontario
received partial course credit for their participation. One participant was excluded for talking
during the study, and two were excluded for making greater than 15% errors, leaving 44
participants.

Materials: The test items were identical to those in Study 3A. Filler items were 80 abstract
concepts that were a subset of those used in Study 1B and were matched with the target items
on number of letters.

Procedure: A concreteness decision task identical to those in Studies 1B and 2B was used.

Results and Discussion—The design and analyses were identical to Study 3A. Errors were
removed from the decision latency analyses (4.7% of trials). Decision latencies that exceeded
3 standard deviations above the concrete word grand mean were replaced with the cutoff value
(1.7%). Mean decision latencies and percent errors are presented in Table 6.

Decision latencies: The interaction between manipulated feature type and NoF was significant
by subjects, F1(1,43) = 15.98, p < .001, F2(1,76) = 2.54, p > .1, minF′(1,98) = 2.19, p > .1. The
halfwidth of the confidence interval of the difference between means was 13 ms. Decision
latencies in the low NoF, shared-manipulated condition were a significant 81 ms longer than
in the high NoF, shared-manipulated condition. In fact, decision latencies in the low NoF,
shared-manipulated condition (with only 3.1 shared features on average) were longer than in
each of the other two conditions as well. When the number of shared features was held constant,
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and distinctive features were manipulated, there was a significant 22 ms difference. The low
NoF, distinctive-manipulated condition was also a significant 25 ms longer than the high NoF,
shared-manipulated condition. Finally, there was only a 3 ms difference between the two high
NoF conditions.

Collapsed across feature type, decision latencies were 51 ms shorter for high (M = 713 ms,
SE = 13 ms) than for low NoF concepts (M = 764 ms, SE = 14 ms), F1(1,43) = 53.59, p < .
00001, F2(1,76) = 7.67, p < .01, minF′(1,96) = 6.71, p < .05. Collapsed across NoF, decision
latencies were 27 ms shorter for concepts with distinctive features manipulated (M = 725 ms,
SE = 13 ms) than for those with shared features manipulated (M = 752 ms, SE = 14 ms), which
was significant by subjects, F1(1,43) = 26.16, p < .00001, but not by items, F2(1,76) = 2.12,
p > .1, minF′(1,88) = 1.96, p > .1.

Error rates: The interaction between manipulated feature type and NoF was significant by
subjects, F1(1, 43) = 6.43, p < .05, F2(1, 76) = 2.17, p > .1, minF′(1,113) = 1.62, p > .2. Collapsed
across feature type, participants made 2.6% fewer errors to high (M = 3.4%, SE = 0.8%) than
to low NoF concepts (M = 6.0%, SE = 0.5%), F1(1,43) = 17.95, p < .0001, F2(1,76) = 4.98, p
< .05, minF′(1,109) = 3.90, p < .06. Collapsed across NoF, there was not a significant difference
when distinctive (M = 4.1%, SE = 0.7%) versus shared features were manipulated (M = 5.2%,
SE = 0.7%), F1(1,43) = 2.92, p > .09, F2 < 1, minF′ < 1. The mean decision latency for abstract
words was 798 ms, and the mean error rate was 4.4%.

Study 3 shows that shared features play a major role, whereas distinctive features play a
facilitatory but lesser role, particularly when the effects of NoF, shared features, and distinctive
features are contrasted. The main effect of NoF was 10 ms in lexical decision and 51 ms in
concreteness decision. The influence of distinctive features when shared features were equated
was basically nil in lexical decision, but 22 ms in concreteness decision. The largest effects
were found for shared features when the number of distinctive features was held constant, 25
ms in lexical decision and 81 ms in concreteness decision.

In both Study 3A and 3B, when NoF is low (9.5 features) and there are very few shared features
(3.1), decision latency is consistently the longest. When NoF is high, decision latency is
consistently the shortest. Note that the difference in the number of shared features for the two
high NoF groups in Study 3 was smaller than in Study 2, and the results differed between
experiments. In Study 2, the low shared and high shared groups contained 12.7 and 12.4 features
respectively, and the difference in number of shared features was 4.0 (6.7 vs. 10.7, so that the
high shared items contained only 1.7 distinctive features on average). In Study 2, there was an
effect of this difference in number of shared features, particularly in concreteness decision. In
contrast, in Study 3, the high NoF, shared-manipulated and high NoF, distinctive-manipulated
item sets contained 15.2 and 15.4 features, differing in number of shared features by only 2.8
(9.1 vs. 6.3). No difference was obtained in either task in Study 3.

The other condition in Study 3 included the low NoF, distinctive-manipulated concepts. These
items averaged 6.5 shared and only 2.9 distinctive features. In the concreteness decision
latencies, this group patterned the way one would imagine. That is, it fell between the low NoF,
shared-manipulated condition on the one hand (which contained 3.4 fewer shared features),
and the two high NoF conditions on the other hand, which contained at least as many shared
features, and a greater number of distinctive features. In other words, these results illustrate
the influence of shared features and suggest that there is a positive impact of distinctive features
as well. The one perplexing data point in Study 3 is the mean lexical decision latency for the
low NoF, distinctive-manipulated condition. In this case, it was virtually identical to the two
high NoF groups of items, showing a lack of influence of overall NoF. Note however that

Grondin et al. Page 13

J Mem Lang. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



lexical decision latency for this group was shorter than for the low NoF, shared-manipulated
items, thus showing an influence of the number of shared features.

Overall Regressions: The above analyses support our conclusion regarding the importance of
shared features to the NoF effect while suggesting that distinctive features also play a positive
role. To provide a further examination of the relative influences of shared and distinctive NoF
in the present experiments, we conducted stepwise regression analyses to compare their ability
to predict decision latencies when the items from Studies 1, 2, and 3 were combined. For the
items that appeared in multiple experiments, we calculated the mean latency across
experiments. We forced in ln(BNC) word frequency and word length in letters on the first step
to account for basic word-reading non-semantic variables. For concreteness decision, shared
NoF significantly predicted decision latency, partial r = -.26, t(246) = -4.20, p < .001, but
distinctive NoF did not, partial r = -.02, t(246) = -0.27, p > .7. After shared NoF entered the
equation, the contribution of distinctive NoF again did not quite reach significance, partial r =
-.11, t(245) = -1.73, p > .08. For lexical decision, shared NoF again significantly predicted
decision latency, partial r = -.25, t(246) = -4.04, p < .001, but distinctive NoF did not, partial
r = -.11, t(246) = -1.80, p > .07. After shared NoF entered the equation, however, both shared
and distinctive NoF were significant predictors: shared NoF, partial r = -.31, t(245) = -5.00,
p < .001; distinctive NoF, partial r = -.21, t(245) = -3.40, p < .01. These regression analyses
confirm the results of the three studies. Both the number of shared features and, to a lesser
extent, the number of distinctive features influence decision latencies.

Study 3 and the regression analyses also help to clarify the interpretation of Study 2. We stated
above that the results of Study 2 were most likely due to a facilitative influence of shared
features, but it was possible that they were due to an inhibitory influence of distinctive features.
These regressions support the former conclusion, but not the latter. That is, they show that the
greater the number of shared features, the shorter the decision latency in both tasks. Although
the influence of distinctive NoF was small, that influence was facilitatory rather than inhibitory
(i.e., the partial correlation with decision latency was negative rather than positive). Therefore,
it can be concluded that the results of Study 2 were due to the strong positive effect of shared
features.

One final aspect of Study 3 should be noted. To a large extent, semantic density of a concept
depends on the number of shared features because feature correlations are calculated using
shared features only. These measures can be decoupled in some circumstances (as they were
in Study 2) because shared features do differ in the degree to which they are correlated with
other features. However, because Study 3 included a condition, the low NoF shared-
manipulated condition, that contained an extremely low number of shared features (3.1 on
average), it was not possible to match it to the high NoF shared-manipulated condition on
semantic density. Therefore, it might be possible that semantic density played a role in Study
3. That is, it could be the case that shared features that are highly correlated with other shared
features are particularly important (i.e., not all shared features are created equal). This
possibility does not change our basic conclusions regarding the importance of shared features,
however, because semantic density was equated in Study 2 and an influence of shared features
was obtained.

Study 4
In previous articles concerning NoF effects, there has been no discussion regarding the manner
in which the types of featural knowledge may be differentially key to understanding these
effects. Knowledge type (or feature type) analyses have been applied to other phenomena,
notably category-specific semantic deficits. For example, Cree and McRae (2003) classified
all of the features in McRae et al.'s (2005) norms in terms of what they called a brain region
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taxonomy. They used research in neuroscience and cognitive neuropsychology to develop a
taxonomy of types of knowledge that are at least somewhat separable in the brain. The
taxonomy includes nine knowledge types: visual form and surface features (e.g., <has legs>,
<made of metal>), tactile features (<is smooth>), functional features (<used by turning>), color
(<is red>), visual motion features (<swims>), taste (<is sweet>), sound (<moos>), smell
(<smells bad>), and encyclopedic features (<lives in Africa>).

In the present analyses, we investigated the knowledge types that exist in the concepts used in
Studies 1, 2, and 3 in terms of the number of shared and distinctive features within each class.
Note that taxonomic features such as <is a vehicle> were excluded because they were excluded
from all feature counts presented in this article.

In our studies, concreteness decision latency was a somewhat more sensitive measure than was
lexical decision latency. Particularly in the case of concreteness decisions (“Is it a concrete
object? That is, it is touchable?”), one would expect that features that strongly signal a concrete
object, and perhaps in addition, are concrete in and of themselves, might be important. In fact,
this might also apply to lexical decision, but in a somewhat muted manner. That is, if a letter
string activates aspects of meaning that signal a concrete object, then that letter string must be
a word.

Arguments could be made for the potential importance of basically all of the knowledge types.
Table 7 presents the overall number of features of each type (i.e., shared plus distinctive),
whereas Table 8 presents shared features only, and Table 9 distinctive features only. Visual
form and surface features should be central because they describe physical parts (<has a tail>),
shapes (<is round>), or the materials used to make an object (<made of metal>), all of which
unambiguously signal a concrete object. Furthermore, visual form and surface features are
relatively plentiful in the norms. Paivio (1986) claimed that in addition to being able to verbally
reason about concrete things, people can generate mental images for concrete words because
they refer to physical things in the world that we perceive. He argued that this additional
information associated with concrete words makes their mental representations richer and
easier to activate. Presumably, the number of visual features, and particularly the number of
shared (relatively common) visual features should increase ease of imageability and thus ease
of a concreteness decision. That is, shared visual form and surface features represent parts and
other aspects of living and nonliving things that are common to many things, and thus would
be imaged with higher frequency relative to distinctive form and surface features.

Tactile features may also be central because if someone knows what an object feels like, it
must be touchable. Thus, tactile features should facilitate concreteness decisions in particular.
Functional knowledge also seems like it should predict decision latencies because if someone
has physically used an object for some purpose (like a fork for eating), then it must be a
touchable object.

Other sensory features might also be important. For example, color likely signals something
that is touchable, although there are salient exceptions such as the sky. Taste and smell features
are somewhat ambiguous. Concrete objects such as foods and fruits and vegetables have salient
taste features, and sometimes smell features as well. However, gases seem like they have a
taste, and definitely have a smell, but they are not touchable. Sounds generally emanate from
concrete objects, although a sound such as thunder is a salient exception, and sound itself is
not touchable or concrete. Visual motion features might signal a concrete object because if a
person has seen something move about on its own, it is probably touchable. Some naturally
occurring non-concrete things such as clouds would be salient exceptions.

Finally, the degree to which encyclopedic features are related to concreteness is less clear.
When Cree and McRae (2003) originally classified features using the brain-region knowledge
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type taxonomy, features that were not clearly part of the other knowledge types were classified
as encyclopedic. Thus, encyclopedic features include somewhat of a mixed bag of information
types. Some of these features, such as <has sentimental value> or <is fun>, are clearly not
related to concreteness. However, many others do signal a concrete object. For example, some
encyclopedic features describe characteristic behaviors of entities, such as <lays eggs> or
<hibernates>. A large number of encyclopedic features convey information about location and
time, such as <lives in water>, <grows in gardens>, <used on farms>, and <worn in winter>.
A conservative estimate is that these types of features comprise at least 60% of the encyclopedic
features when shared and distinctive features are combined. These features signal two types
of information. First, the activities that are part of these featural descriptions carry information
about concreteness in that they signal that the thing is alive, grows, is used, or is worn. Second,
they carry contextual information regarding the situations in which the object or entity tends
to occur, such as the location at which it tends to be found. Bransford and McCarrell (1974)
have made claims regarding contextual information that are relevant to these encyclopedic
features. They argued that because people interact directly with concrete things in the world,
but not with abstract concepts, concrete words have more contextual information associated
with them (such as place and time as indexed by these encyclopedic features), facilitating the
computation and use of these concepts. It is possible that the greater the amount of this
contextual information associated with a concept, the easier a concreteness decision may be
(and perhaps a lexical decision as well). In addition, common contexts that are shared by
numerous objects and entities may play a particularly important role.

Method
We counted the number of shared and distinctive features of each knowledge type in each
concept used in Study 1, 2, or 3. These counts were the independent variables of interest in
stepwise regression analyses. The dependent variables were concreteness and lexical decision
latencies when the items from all three studies were combined. As in the regression analyses
presented above, there were 250 data points for each task, and ln(BNC) word frequency and
length in letters were forced in on the first step to account for basic word-reading non-semantic
variables.

Results & Discussion
The partial correlations and significance values are presented in Table 10. Note that tolerances
were sufficiently high in all cases. For concreteness decision latency, the knowledge types that
initially significantly predicted decision latency were shared encyclopedic features and shared
visual form and surface features. Due to partitioning of variance, however, four variables
entered the regression equation in the following order: shared encyclopedic features, shared
tactile features, shared visual form and surface features, and shared taste features.

The results were similar for lexical decision latency. The knowledge types that initially
predicted decision latency were again shared encyclopedic and shared visual form and surface
features. Due to partitioning of variance, five variables entered the equation in the following
order: shared encyclopedic, shared visual form and surface, shared tactile, distinctive visual
form and surface, and shared taste features.

These regressions further support the conclusion that shared features are central to NoF effects.
Significant predictors consisted almost exclusively of shared features. Shared visual form and
surface features are important because parts, shape, and materials are highly informative for
object concepts, and because features corresponding to this knowledge type are relatively
numerous. The one case in which a distinctive knowledge type predicted variance in decision
latencies involved visual form and surface knowledge. Shared encyclopedic features predicted
decision latencies in both tasks. As stated above, although these features do not fit into the
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other brain region knowledge types, many are central to object concepts and often do signal
concreteness (such as where something lives or grows, its characteristic behaviors, or where
an object tends to be located or used). In addition, many of the encyclopedic features in the
norms correspond to the amount of contextual (situational) knowledge that people possess
about concrete objects. Approximately 70% of the shared encyclopedic features were of this
sort, versus about 60% overall for encyclopedic features. As with visual form and surface
features, these types of encyclopedic features are produced frequently by participants in the
norming task.

With respect to shared tactile features, they predicted concreteness decision latency presumably
because the instructions asked participants to indicate whether each word referred to something
that is a touchable. However, it was somewhat surprising that they predicted lexical decision
latency as well, particularly because tactile features are not numerous. It is perhaps the case
that it is meaningful if any tactile features are produced for a concept. That is, if a person has
actually handled something and thus knows what it feels like, they are likely to produce only
one tactile feature such as <feels rough>, and this information signals that a letter string
corresponds to a word that refers to a concrete touchable object. Therefore, although tactile
features are not numerous, their presence is meaningful, signaling personal contact with the
object or entity. Finally, the amount of information about how objects taste played a role. Taste
features are important for fruits, vegetables, and foods in the present experiments. In other
words, if people have eaten something, then they know it is concrete, and they know that its
name is a word. As is the case with tactile features, people are likely to produce only one taste
feature per concept (e.g., <tastes sweet>).

Finally, it is somewhat surprising that functional knowledge did not predict decision latencies,
particularly given the centrality of function in research on concepts and semantic memory, and
the relatively large number of functional features in the norms. Knowledge regarding how
something is used seems like it should be a reliable cue to concreteness or whether something
is touchable in particular. It is not entirely clear why the number of functional features failed
to predict either concreteness or lexical decision latency. One possibility is that the null effects
of the number of function features hinges on the fact that the number of different functions that
an object performs is not informative of concreteness, at least when there exists at least one
known function. That is, according to the norms, some objects are used for multiple related
functions, such as <used by bouncing>, <used by throwing>, <used for sports>, and <used for
games> for ball, whereas others have one feature referring to a single dominant function, as
in <used for cooking> for pot. It may be the case that the fact that an object is consistently used
for a single function is as salient and informative a cue as is the fact that it is used for multiple
related functions. Also note that for a feature to be part of the counts that were used in this (and
our other related) research, a minimum of five of thirty participants must have produced it.
Sometimes, as was the case with pot <used for cooking>, one functional feature dominated (it
was produced by 28 of 30 participants). Therefore, other related functions did not reach
threshold. For example, with pot, three participants produced <used for boiling water> and two
produced <used for making stew>. As discussed by Barsalou, Sloman, and Chaigneau
(2005), some features like <used for cooking> may stand in for a number of related functions.
It may be the case that functional feature counts on a concept-wise basis might be somewhat
obscured in some of these cases, which may have contributed to the null effect of the number
of functional features.

In summary, the types of information that most strongly drive NoF effects are knowledge
regarding objects' common parts, shapes, and materials, where and when they commonly live,
grow, and are located, how they feel, and how they taste. These types of knowledge influence
both deciding that a word refers to a concrete object, and deciding that a concept's name is
indeed a word. Finally, these analyses buttress our conclusions regarding the importance of
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shared features because virtually all of the significant predictors involve shared features of
various types.

General Discussion
Pexman and colleagues (Pexman et al., 2002; 2003) found that concepts with many features
were responded to more quickly than those with few features, and this was taken as evidence
of a computational advantage for words rich in semantic representation. The present Study 1
was essentially a replication of Pexman's studies, showing that the NoF effect is robust when
using larger sets of items that were better equated on a large number of variables. The remainder
of the present article adds to the understanding of these empirical phenomena in two major
ways. First, we built on previous research that has demonstrated that the distinction between
shared and distinctive features has implications for a number of aspects of conceptual
processing. Studies 2 and 3 showed that increasing the number of shared features facilitates
processing to a greater extent than does increasing the number of distinctive features, although
both types of features do facilitate decision latencies. Second, previous research has provided
a great deal of evidence that object concepts are represented over multiple modality-specific
brain regions. We used insights from these studies, most particularly the brain region feature
type taxonomy of Cree and McRae (2003), to test whether types of knowledge that are
associated with various brain regions contribute differentially to NoF effects. Study 4 showed
that NoF effects are due primarily to shared encyclopedic, visual form and surface, tactile, and
taste features. In the next section, we describe how our results and analyses constrain
interpretations of NoF effects.

Decisions versus Computing a Concept
Much of the previous discussion has been framed in terms of a decision-making account of
our results. That is, the idea has been that certain types of knowledge signal concrete objects,
and features that are common to numerous concrete objects are better cues to concreteness and
lexical decisions than are those that apply to very few objects.

One might wonder if it is possible to account for the present results, at least those in the
concreteness decision task, by focusing instead on the computation of word meaning. We begin
with the assumption that a model based on distributed semantic representations is required.
Consider, for example, distributed attractor network models of semantic memory such as those
used by Cree, McRae, and McNorgan (1999) or Plaut and Shallice (1993). Typically, decision
latency is simulated in these models using some metric of network error, such as mean squared
error or cross-entropy. Error is recorded as the network settles to a stable representation.
Distributed feature-based models of semantic memory have sparse semantic representations
because each concept includes only a small subset of the total number of possible features.
Therefore, the model has a bias to turn semantic units off because it is trained to turn each unit
off for the majority of concepts. Because the most challenging aspect of the model's
computations corresponds to activating over time those feature units that are part of a concept,
by far the bulk of the error as the network settles is associated with these units. To correctly
simulate NoF effects, a model would have to show less error for concepts that contain a greater
number of semantic feature units that need to be activated. Therefore, in a system such as this,
all other factors being equal (as they were in our studies), concepts with many active units
(high NoF) engender greater error than those with few active units (low NoF) as the network
settles. Therefore, it seems unlikely that any model of this sort that uses an error measure to
simulate latencies would be able to produce a processing advantage for high NoF concepts.

To examine this issue, we implemented a model in which the words representing each of the
541 concepts in the norms were represented as three randomly activated units out of 30 word
form input units. There were 2,349 semantic feature output units, each representing a feature
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from McRae et al.'s (2005) norms (all taxonomic features were excluded, as in all analyses
reported above). The model was trained to settle on a concept's representation over 20 iterations
(“time steps”) using the continuous recurrent backpropagation-through-time algorithm
(Pearlmutter, 1995) and cross-entropy as the error metric. The identical model is described in
full in Cree, McNorgan, and McRae (2006). Following training, we simulated Study 1 using
the items from that study. As expected, error over the semantic units was greater for high NoF
concepts than for low NoF concepts until the last few time steps when both settled to
approximately the same error levels. There was no difference in cross-entropy error between
the high and low shared conditions of Study 2 (these conditions were identical in terms of
overall NoF). Finally, as in the simulation of Study 1, the model incorrectly predicted reverse
NoF effects in Study 3.

It is possible, of course, that other measures from a distributed attractor network could simulate
decision latencies. One such measure might be the total amount of activation in the system,
with the assumption being that decision latency is monotonically related to total activation.
Again, the influence of such a measure is self-evident for basic NoF effects, and in this case,
it correctly accounts for the results. In the simulation of Study 1, the total activation was greater
for the high NoF group from time steps 10-20 of the computation of the semantic
representations from word form. That is, the greater the number of features that are activated,
the greater the overall activation, and the shorter the predicted decision latency.

The next question is whether a model of this sort could account for the influence of shared
features. The answer appears to be no. The total activation measure shows extremely small
differences between the high and low shared groups of Study 2. For Study 3, the simulation
predicts shorter decision latencies for the two high NoF conditions than for the two low NoF
conditions. It does predict a small disadvantage late in processing (time steps 14-20) for the
low NoF shared-manipulated condition as compared to the low NoF distinctive-manipulated
condition, although this difference is much smaller than between the low NoF distinctive-
manipulated condition and the two high NoF conditions, which does not mirror the results of
Study 3. Thus, it does not appear that an attractor network model with distributed feature-based
representations successfully accounts for the present results.

It should be noted that a failure to simulate human empirical results is actually a null effect,
similar to an experimental null effect. That is, it is possible that a different type of distributed
network might be able to simulate our studies. However, given these simulation results, one
question that follows is whether it is possible that a decision-making account could provide an
explanation for these results. There exist other studies of distinctive versus shared features that
highlight the importance of decision processes. Contrast the present results with those of Cree
et al. (2006). They found advantages in feature verification latencies for distinctive over shared
features in both living and nonliving things (although see Randall, Moss, Rodd, Greer, & Tyler,
2004, who found an advantage for distinctive features of nonliving things, but a disadvantage
for distinctive features of living things). At first blush, these results appear to be inconsistent
with those of the present Studies 2 and 3. In Study 1 of Cree et al., a concept name was presented
first, followed by a feature name. Participants were faster to decide that a feature was part of
a concept if the feature was distinctive. That is, there was an advantage for distinctive features
when the decision entailed evaluating a specific concept-feature relation, a type of decision
that differs substantially in nature from deciding whether a letter string corresponds to a
concrete concept or an English word.

Cree et al. (2006) simulated this result by inputting the concept name, then recording the
activation of the target feature node (using the same model as used herein). Distinctive features
were activated more quickly than were matched shared features. Given that the decision
entailed directly evaluating a concept-feature relation, using the assumption that the network's
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activation of a specific feature is monotonically related to feature verification latency provided
a good fit to the data. Thus, the difference in the importance of distinctive versus shared features
in the two studies is due directly to the decision that was required, and this difference is apparent
in the ability of an attractor network to simulate the data.

One possible method to simulate a concrete-abstract decision process is to use something akin
to a random walk model of conceptual decision making (Joordens, Piercey, & Azerbehi,
2003; Ratcliff, Gomez, & McKoon, 2004). Such a model includes two thresholds, one
representing a concrete decision and another representing an abstract decision. The system
might behave as follows. A word is presented and its semantic features are computed. When
a feature that signals a concrete object is activated, such as a visual form and surface feature,
certain encyclopedic features, tactile features, or taste features, the system moves closer to the
concrete threshold. The greater the number of these types of features that are computed, the
shorter the decision latency. Shared features that are common to numerous concrete objects
would thus facilitate decisions for two reasons. First, they are better cues to concreteness
because they better cue the fact that the word refers to something that is a member of the large
category of concrete objects and entities. Second, they are more common (frequent) familiar
in of themselves. Therefore, they are cues that people are more familiar with.

Similar well-known results have been found for category verification tasks, such as “Is a robin
a bird?”, that are analogous to the concreteness decision task used in our studies. In category
verification, the relevant shared features are those that are shared by members of the category,
that is, bird in this case (Rosch & Mervis, 1975). Typical exemplars such as robin for the
category bird possess a greater number of features that are shared by category exemplars than
do atypical exemplars such as ostrich. As such, participants rate those exemplars as more
typical, and they verify them more quickly as a member of the category (Smith, Shoben, &
Rips, 1974). These category verification effects have most often been explained in terms of
decision processes rather than the speed of concept retrieval. Note that the notion of shared
features is thus relative to the required decision. That is, what is shared across concepts depends
critically on the category that is relevant to the task.

If our concreteness decision results are analogous to category verification, one would expect
that concreteness ratings might mirror them in the same manner that typicality ratings mirror
category verification latency. That is, if off-line concreteness ratings show a pattern that is
similar to the concreteness decision latencies, then this would provide additional evidence for
our decision-making account. We tested this idea by collecting concreteness ratings for the
250 stimuli included in the three studies from 31 new participants using instructions based on
those of Toglia and Battig (1978). As is customary for concreteness ratings, a seven-point scale
was used with seven corresponding to definitely concrete, and the resulting means were scaled
by 100. An additional 250 words referring to abstract concepts were included to anchor the
scale. As would be expected given that all of our items refer to concrete objects and entities,
the variance in the ratings for those items was quite low and ratings tended to be in the upper
end of the scale. Although the differences were quite small, the results did mirror the
concreteness decision latencies. For Study 1, concreteness ratings were higher for high NoF
(M = 634) than for low NoF items (M = 614), t(126) = 3.07, p < .01. For Study 2, concreteness
ratings were higher for high shared (M = 632) than for low shared items (M = 621), t(108) =
2.20, p < .03. For Study 3, the pattern of means was similar to the concreteness decision
latencies in that concreteness ratings were lowest for the low NoF shared manipulated condition
(M = 610), and the other three conditions were similar (high NoF shared manipulated, M =
629; low NoF distinctive manipulated, M = 623; high NoF distinctive manipulated, M = 622).
However, neither of main effects nor the interaction were significant, p > .1 in all three cases.
In summary, the concreteness ratings pattern with the concreteness decision latencies, thus
bolstering our decision making account.

Grondin et al. Page 20

J Mem Lang. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In category verification tasks, features that are not part of category exemplars cue a “no”
response. Research has begun to be conducted on abstract concepts, and it is clear that the types
of knowledge underlying them differ from that of concrete concepts (Barsalou & Wiemer-
Hastings, 2005). Therefore, the types of knowledge computed when a word referring to an
abstract concept is read differ from concrete concepts, and they push the system toward making
an abstract “no” decision. When an abstract or intangible feature is activated, the system moves
closer to the abstract threshold. Whatever criterion is reached first determines the system's
decision. The fact that abstract decision latencies were longer than concrete decision latencies
in all three experiments may be due to the fact that knowledge underlying abstract concepts is
less clear. More likely, this occurred because the concreteness decision task was presented to
participants as if it required a yes/no response, and negative responses are virtually always
slower than positive ones in any binary decision task. In fact, one way that such “no” responses
could be modeled is to include an inherent drift toward that decision (in this case, that the word
refers to an abstract concept). That is, there could be an inherent drift toward a “no” response
so that positive evidence is required to respond “yes”, and a “no” response is generated in the
absence of such evidence. This is similar in spirit to the time deadline used in Grainger and
Jacobs' (1996) multiple read-out model.

Another way to think about the influence of shared features on concreteness decision is to
consider analogous orthographic effects on lexical decision. Numerous studies have shown
that orthographic factors such as frequent letters or sub-lexical letter strings facilitate lexical
decisions (Coltheart et al., 1977). For example, a variable such as orthographic neighborhood
size indexes the degree to which a letter string shares orthographic “features” (letters, bigrams,
trigrams, etc.) with other words. Just as being more similar to other words facilitates lexical
decisions, being more similar to other concrete objects and entities facilitates concreteness
decisions.

With respect to our lexical decision results, we controlled for word recognition variables that
are known to influence lexical decision latencies. Therefore, any differences found in our
studies were due to semantic variables because the words in various conditions were equally
word-like with respect to orthographic and phonological variables. Semantic knowledge does
influence lexical decisions, although not as strongly as it influences semantic-based decisions
(Becker et al., 1997). When making a decision regarding whether a letter string is a word,
information signaling that it refers to a concrete object also signals that the letter string is indeed
a word. Of course, the same could be said for numerous types of information; semantic
knowledge that signals an abstract concept, an activity (a verb such as jog), and so on, also
signals that the letter string corresponds to a word. In our studies, however, we were concerned
with differences within concrete concepts only. Therefore, features that are shared by numerous
concrete concepts push a binary decision system toward a “word” decision, but presumably
their influence would be weaker (less easily detectable) than in the case in which the decision
was indeed whether the word referred to a concrete concept. Thus, the observed influence of
shared features was weaker in lexical decision than in the concreteness decision tasks of Studies
2 and 3.

In summary, it is clear that the influence of a variable such as the degree to which features are
shared across concepts depends crucially on the task under consideration. Feature verification
shows an advantage for distinctive features. Shared features inhibit a task such as picture
naming in which participants must distinguish a basic level concept from other similar
concepts. Finally, features that are shared across category members facilitate decisions
regarding membership in that category.
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Conclusion
The present research provides additional insight into why words that possess rich semantic
representations are responded to more quickly. Using tightly matched lists of concrete
concepts, we demonstrated that concepts with many features are responded to faster than those
with few features in lexical and concreteness decision tasks. We also demonstrated that this
facilitation is modulated by whether features are distinctive or shared. Finally, the most
important types of knowledge driving these decision-based effects are shared visual form and
surface, encyclopedic, tactile, and taste features.
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Appendix A: Stimuli used in Studies 1A and 1B
Low Number of Features High Number of Features

ball axe

bayonet balloon

bedroom barn

birch basement

biscuit bathtub

bluejay bear

boat blender

broccoli bra

brush bus

bucket camel

cabinet camisole

catfish cannon

cherry canoe

clamp carrot

cloak chimp

cod cougar

cupboard cow

dish coyote

doll crab

dove desk

eel dog

finch drapes

flamingo fawn

garage freezer

hook garlic

hornet goat

inn gorilla

mackerel grenade
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mirror hammer

mixer hose

moth iguana

oak kettle

otter lettuce

pan lion

parka missile

peas mushroom

pheasant necklace

pin nylons

pine olive

platypus pearl

pot pen

pumpkin pencil

razor pickle

rhubarb pig

rock pony

rocker potato

scissors radish

shawl rake

skillet rat

skunk robe

snail rooster

spinach sandals

squid saucer

starling screws

stone seal

taxi spear

tent spoon

toilet swimsuit

toy sword

tray tiger

trolley toad

turnip train

veil tricycle

whale wasp

Appendix B: Stimuli used in Studies 2A and 2B
Low Number of Shared Features High Number of Shared Features

basement bag

beaver ball

bike bazooka

bolts bear

bomb beetle

broom bookcase
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bull bowl

calf buffalo

chair buggy

church bureau

cigar cabinet

cork car

crown caribou

curtains coyote

dog crab

doll dish

drapes dress

faucet dresser

flea elk

garage flute

gate fox

gloves frog

grenade jacket

hornet knife

jar lion

jeans lobster

kettle marble

lime mushroom

medal oak

minnow olive

mittens pear

necklace piano

octopus plate

onions pliers

pajamas pony

pie pot

pigeon raccoon

pillow radish

pine scooter

prune shack

pumpkin shrimp

ruler skillet

ship slippers

sink spatula

skirt spear

skis squirrel

sofa stone

swimsuit tack

tomahawk tractor

train tray

unicycle tricycle
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veil truck

vine tuba

violin van

walrus walnut

Appendix C: Stimuli used in Studies 3A and 3B
Distinctive features manipulated

Low Number of Distinctive Features High Number of Distinctive Features

brick anchor

cedar apartment

flamingo barn

garage basement

goldfish bathtub

hook book

mirror bra

parsley canoe

rock cigarette

sack crown

saddle faucet

scissors flea

seaweed hose

shawl kettle

shelves nylons

skunk onions

slippers pyramid

stick ruler

toy sandals

worm shovel

Shared features manipulated

Low Number of Shared Features High Number of Shared Features

bagpipe apron

beehive balloon

bouquet banner

cape bolts

certificate box

clock carpet

envelope cottage

fence dolphin

hut drapes

key freezer

menu goat

muzzle pigeon

pepper potato

pier prune

pine revolver
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projector screws

radio sheep

tape skirt

unicycle sled

wheel stool
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Table 1

Characteristics of Stimuli Used in Studies 1A and 1B

Variable Low NoF High NoF

M SE M SE

Number of features (NoF) 9.0 0.2 15.7 0.3

ln(BNC) frequency 6.4 0.2 6.4 0.2

Familiarity 5.7 0.2 5.7 0.2

Number of letters 5.4 0.2 5.4 0.2

Number of phonemes 4.4 0.2 4.5 0.2

Number of syllables 1.6 0.1 1.7 0.1

Orthographic neighborhood size (N) 4.6 0.8 4.4 0.7

Semantic density 157 20 155 11

Number of creatures 18 21

Number of fruits/vegetables 11 8

Number of living things 35 35

Number of musical instruments 0 0

Note. ln = the natural logarithm (loge); BNC = British National Corpus
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Table 2

Decision Latencies (ms) and Error Rates (%) for Studies 1A (lexical decision) and 1B (concreteness decision)

Study 1A Study 1B

M SE M SE

Latencies

 Low NoF 623 19 666 16

 High NoF 593 20 637 14

 Difference 30** 29**

Error Rates

 Low NoF 6.5 0.8 5.6 0.9

 High NoF 2.8 0.5 2.1 0.6

 Difference 3.7** 3.5*

Note. NoF = Number of Features,

*
= significant by subjects,

**
= significant by subjects and items
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Table 3

Characteristics of Stimuli Used in Studies 2A and 2B

Variable Number of Shared Features

Low High

M SE M SE

Number of shared features 6.7 0.2 10.7 0.2

Number of distinctive features 6.0 0.3 1.7 0.1

Number of features (NoF) 12.7 0.4 12.4 0.3

ln(BNC) frequency 6.6 0.2 6.5 0.2

Familiarity 6.0 0.3 6.0 0.3

Number of letters 5.4 0.2 5.4 0.2

Number of phonemes 4.5 0.2 4.6 0.2

Number of syllables 1.6 0.1 1.7 0.1

Orthographic neighborhood size (N) 4.4 0.7 4.3 0.8

Semantic density 170 19 172 13

Number of creatures 12 15

Number of fruits/vegetables 5 6

Number of living things 37 32

Number of musical instruments 1 2

Note. ln = the natural logarithm (loge); BNC = British National Corpus
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Table 4

Decision Latencies (ms) and Error Rates (%) for Studies 2A (lexical decision) and 2B (concreteness decision)

Study 2A Study 2B

M SE M SE

Latencies

 Low Shared 555 13 756 31

 High Shared 544 12 714 29

 Difference 11* 42**

Error Rates

 Low Shared 3.9 0.6 4.5 0.8

 High Shared 3.2 0.5 3.0 0.6

 Difference 0.7 1.5

*
= significant by subjects,

**
= significant by subjects and items
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Table 10

Predicting Decision Latency with Knowledge Types

Concreteness Decision

Predictor partial r t(243) p

shared encyclopedic -.23 -3.61 .001

shared tactile -.16 -2.51 .01

shared visual form & surface -.18 -2.88 .004

shared taste -.14 -2.16 .03

Lexical Decision

Predictor partial r t(242) p

shared encyclopedic -.20 -3.12 .002

shared visual form & surface -.19 -2.93 .004

shared tactile -.16 -2.50 .01

distinctive visual form & surface -.16 -2.51 .01

shared taste -.14 -2.12 .04
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