Abstract
The interaction between tomato plants and Clavibacter michiganensis subsp. michiganensis (Cmm) represents a model pathosystem to study the interplay between the virulence determinants of a Gram-positive bacterium and the attempt of a crop plant to counteract pathogen invasion. To investigate plant responses activated during this compatible interaction, we recently analyzed gene expression profiles of tomato stems infected with Cmm. This analysis revealed activation of basal defense responses that are typically observed upon plant perception of pathogen-associated molecular patterns. In addition, Cmm infection upregulated the expression of host genes related to ethylene synthesis and response. Further analysis of tomato plants impaired in ethylene perception and production demonstrated an important role for ethylene in the development of disease symptoms. Here we discuss possible molecular strategies used by the plant to recognize Cmm infection and possible mechanisms employed by the pathogen to interfere with the activation of plant defense responses and promote disease.
Key words: tomato, Clavibacter michiganensis subsp. michiganensis, ethylene, basal defense, pathogen-associated molecular patterns
Little is known on the strategies employed by Gram-positive phytopathogenic bacteria to sense the presence of the host plant, penetrate and colonize tissue, and counteract plant defense responses. Also largely unexplored are the molecular mechanisms associated with detection of Gram-positive bacteria by the host plant and with the activation of attempted defense responses.
Among the most devastating Gram-positive disease agents are actinobacteria of the genus Clavibacter whose subspecies cause systemic infections of the xylem in different plant species.1 The subspecies Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato (Solanum lycopersicum), an economically important disease causing yield losses worldwide.1 In recent years important insight into the molecular mechanism of Cmm pathogenicity has been achieved,1 and genome sequence of a Cmm strain has been established.2 Major Cmm pathogenicity determinants are plasmid borne and include the β-1,4-endocellulase CelA,3 and the putative serine protease Pat-1.4 Additional genes important for virulence are located in a pathogenicity island of about 129 kb on the Cmm chromosome which has a relatively low G + C content and is required for effective Cmm colonization of tomato plants.2
Tomato is an economically important crop amenable to genetic analysis and transformations. Many resources are available for this plant species, including germplasm collections, natural and induced mutants, an extensive expressed sequence tag database and an ongoing genome sequencing project.5 In addition, because of its experimental tractability, tomato plants have been widely used to study plant disease resistance and susceptibility. As genetic and molecular tools for both Cmm and tomato are in place, the tomato-Cmm pathosystem represents an excellent model to study the interplay between virulence determinants of a Gram-positive phytopathogenic bacterium and defense responses of a crop plant.
To get insight into host responses occurring during the tomato-Cmm compatible interaction and molecular mechanisms associated with the development of wilt and canker disease symptoms, we recently analyzed gene expression profiles of tomato stems infected with Cmm.6 This analysis revealed a clear activation of basal defense responses, which are typically observed upon plant perception of pathogen-associated molecular patterns (PAMPs).7 These include production and scavenging of free oxygen radicals, induction of defense-related genes, enhanced protein turnover, and hormone biosynthesis. Interestingly, several tomato genes encoding proteins with characteristics of cell-surface receptors were differentially expressed in response to Cmm infection.6 These proteins can be considered as candidate receptors for Cmm PAMPs and include two receptor-like kinases, a homolog of the receptor for the fungal PAMP ethylene-inducing xylanase from Trichoderma viride,8 and the Ve1 resistance protein, which confers resistance in tomato to the vascular disease Verticillium wilt.9
It remains to be elucidated what are the Cmm PAMPs perceived by tomato plants. Cold-shock protein from Gram-positive bacteria and different microbial patterns of Gram-negative bacteria, including lipopolysaccharides, flagellin, and the translational elongation factor EF-TU, were shown to act as PAMPs in plants.10 Similarly, Cmm cold shock protein or cell wall components, such as peptidoglycan, lipoteichoic acid, and lipopeptides, which function as Gram positive-derived PAMPs in animal systems11, may act as PAMPs during the tomato-Cmm interaction. Additional possible Cmm PAMPs are exopolysaccharides, which are produced in large amounts by the bacterium and may interact directly with surface-exposed plant proteins.1 The numerous extracellular cell wall degrading enzymes secreted by Cmm may also function as PAMPs, as observed for the fungal ethylene-inducing xylanase.2,12 Alternatively, by virtue of their hydrolytic activity, these enzymes may release plant cell wall fragments that are recognized by PAMP receptors. Indeed, different β-glucan fragments released from plant cell walls were shown to elicit plant basal defense responses.13,14
How Cmm copes with the activation of basal defense responses is largely unknown. Many potential virulence determinants that might interfere with the plant defense reaction are clustered in the Cmm pathogenicity island, which is essential for effective plant colonization.2 Several extracellular serine proteases are encoded in this region and inactivation of part of them by gene replacement drastically reduced Cmm colonization of tomato plants.2 Although their targets are still unknown, these proteins might interfere with plant signaling pathways as it was described for certain cysteine proteases that serves in Gram-negative bacteria as suppressors of plant defenses.15 An additional candidate for interference with plant signaling may be a tomatinase, also encoded in the Cmm pathogenicity island, because hydrolysis products of α-tomatine were shown to suppress plant defense responses in a fungal system.16
In addition to detecting the activation of basal defense responses, host gene expression profiling during the tomato-Cmm interaction unraveled the involvement of ethylene in disease development.6 In fact, Cmm infection of tomato stems was found to induce expression of host genes related to ethylene biosynthesis and response (Fig. 1).6 Further analysis of ethylene-insensitive Never ripe mutants and transgenic plants with reduced ethylene synthesis indicated that ethylene is required for normal development of wilting symptoms (Fig. 2), but not for the activation of defense-related genes or bacterial colonization.6 We hypothesize that during infection ethylene synthesis and response are manipulated by Cmm virulence determinants to promote disease. Alternatively, ethylene is released as part of the host responses activated by bacterial recognition, or as a result of tissue maceration. In line with our first hypothesis, the type III effectors AvrPto and AvrPtoB from Pseudomonas syringae pv. tomato were shown to promote enhanced disease symptoms in tomato leaves, in part, by upregulating genes involved in ethylene production.17 Interestingly, expression in tomato plants of AvrPto or AvrPtoB, and infection with Cmm resulted in the upregulation of the SlACO1 gene encoding the key enzyme of ethylene biosynthesis ACC oxidase.6,17
In conclusion, future research challenges for understanding how host responses are regulated by the plant and manipulated by a Gram-positive bacterium will be the isolation of Cmm PAMPs and their plant receptors, the identification of Cmm virulence determinants and the elucidation of their mode of action.
Acknowledgements
This work was supported by the German Research Foundation program for trilateral cooperation among Israel, Palestinian Authority, and Germany (grant no. EI 535/12-1), and by the US-Israel Binational Agricultural Research and Development Fund (BARD; grant no. IS-4047-07).
Abbreviations
- Cmm
Clavibacter michiganensis subsp. michiganensis
- PAMP
pathogen-associated molecular pattern
- ACC
1-aminocyclopropane-1-carboxylic acid
- ACO
ACC oxidase
Footnotes
Previously published online as a Plant Signaling & Behavior E-publication: http://www.landesbioscience.com/journals/psb/article/5935
References
- 1.Gartemann KH, Kirchner O, Engemann J, Grafen I, Eichenlaub R, Burger A. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. J Biotechnol. 2003;106:179–191. doi: 10.1016/j.jbiotec.2003.07.011. [DOI] [PubMed] [Google Scholar]
- 2.Gartemann KH, Abt B, Bekel T, Burger A, Engemann J, Flugel M, Gaigalat L, Goesmann A, Grafen I, Kalinowski J, Kaup O, Kirchner O, Krause L, Linke B, McHardy A, Meyer F, Pohle S, Ruckert C, Schneiker S, Zellermann EM, Puhler A, Eichenlaub R, Kaiser O, Bartels D. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. J Bacteriol. 2008;190:2138–2149. doi: 10.1128/JB.01595-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Jahr H, Dreier J, Meletzus D, Bahro R, Eichenlaub R. The endo-β-1,4-glucanase CelA of Clavibacter michiganensis subsp. michiganensis is a pathogenicity determinant required for induction of bacterial wilt of tomato. Mol Plant Microbe Interact. 2000;13:703–714. doi: 10.1094/MPMI.2000.13.7.703. [DOI] [PubMed] [Google Scholar]
- 4.Dreier J, Meletzus D, Eichenlaub R. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Mol Plant Microbe Interact. 1997;10:195–206. doi: 10.1094/MPMI.1997.10.2.195. [DOI] [PubMed] [Google Scholar]
- 5.Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S. Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell. 2002;14:1441–1456. doi: 10.1105/tpc.010478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I, Sessa G. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 2008;146:1797–1809. doi: 10.1104/pp.107.115188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Nurnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249–266. doi: 10.1111/j.0105-2896.2004.0119.x. [DOI] [PubMed] [Google Scholar]
- 8.Ron M, Avni A. The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell. 2004;16:1604–1615. doi: 10.1105/tpc.022475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA. 2001;98:6511–6515. doi: 10.1073/pnas.091114198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Bittel P, Robatzek S. Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opin Plant Biol. 2007;10:335–341. doi: 10.1016/j.pbi.2007.04.021. [DOI] [PubMed] [Google Scholar]
- 11.Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature. 2000;406:782–787. doi: 10.1038/35021228. [DOI] [PubMed] [Google Scholar]
- 12.Belien T, Van Campenhout S, Robben J, Volckaert G. Microbial endoxylanases: effective weapons to breach the plant cell-wall barrier or, rather, triggers of plant defense systems? Mol Plant Microbe Interact. 2006;19:1072–1081. doi: 10.1094/MPMI-19-1072. [DOI] [PubMed] [Google Scholar]
- 13.Klarzynski O, Plesse B, Joubert JM, Yvin JC, Kopp M, Kloareg B, Fritig B. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 2000;124:1027–1038. doi: 10.1104/pp.124.3.1027. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N. Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell. 2000;12:817–826. doi: 10.1105/tpc.12.5.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Mudgett MB. New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu Rev Plant Biol. 2005;56:509–531. doi: 10.1146/annurev.arplant.56.032604.144218. [DOI] [PubMed] [Google Scholar]
- 16.Bouarab K, Melton R, Peart J, Baulcombe D, Osbourn A. A saponin-detoxifying enzyme mediates suppression of plant defences. Nature. 2002;418:889–892. doi: 10.1038/nature00950. [DOI] [PubMed] [Google Scholar]
- 17.Cohn JR, Martin GB. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. Plant J. 2005;44:139–154. doi: 10.1111/j.1365-313X.2005.02516.x. [DOI] [PubMed] [Google Scholar]