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The signal transduction pathway of the plant stress and defense 
hormone, ethylene, has been extensively elucidated using the 
plant genetic model Arabidopsis over the last two decades. Among 
others, a MAPKKK CTR1 was identified as a negative regulator 
that has led to the speculation of MAPK involvement in ethylene 
signaling. However, it remained unclear how the MAPK modules 
acting downstream of the receptors to mediate ethylene signaling. 
We have recently presented new evidence that the MKK9-MPK3/6 
modules identified by combined functional genomic and genetic 
screens mediate ethylene signaling, which is negatively regulated by 
the genetically identified CTR1-dependent cascades. Our genetic 
studies show consistently that the MKK9-MPK3/MPK6 modules 
act downstream of the ethylene receptors. Biochemical and trans-
genic analyses further demonstrated that the positive-acting and 
negative-acting MAPK activities are integrated and act simul-
taneously to control the key transcription factor EIN3 through 
dual phosphorylations to regulate the EIN3 protein stability and 
downstream transcription cascades. This study has revealed a novel 
molecular mechanism that defines the specificity of complex MAPK 
signaling. Comprehensive elucidation of MAPK cascades and the 
underlying molecular mechanisms would provide more precise 
explanations for how plant cells utilize MAPK cascades to control 
specific downstream outputs in response to distinct stimuli.

Ethylene (C2H4) regulates stress and defense responses and many 
key events of plant growth and development.1,2 In the plant model 
system Arabidopsis thaliana, several signaling components in the 
ethylene signal transduction pathway have been genetically identified 
from membrane receptors to nuclear activators as well as feedback 
regulators (Fig. 1).2,3 Multiple membrane proteins, ETR1, ETR2, 
ERS1, ERS2 and EIN4, play partially redundant roles as ethylene 

receptors.4-9 In the absence of ethylene, ETR1 and other recep-
tors suppress hormone signaling by activating a negative regulator, 
CTR110,11 (a putative Raf-like MAPKKK), in ER complexes.12-15 
Subsequently, a key transcription factor EIN3 is degraded by the 
26S proteasome through the recognition by specific F-box proteins 
EBF1/2 in the E3 ligase complexes.16-20 Such action eventually 
blocks the downstream signal responses.

In contrast, upon binding of ethylene to the receptors, CTR1 
is dissociated from receptor complexes and inactivated to initiate 
the downstream signaling.15 The immediately following principal 
nuclear event is to stabilize EIN3 proteins in the nucleus to acti-
vate the primary transcription.16-21 In ethylene signaling, a metal 
transporter-like membrane protein EIN2, that is genetically placed 
downstream of the receptors but upstream of EIN3, is to be impor-
tant for the EIN3 accumulation.18,22 One of the primary EIN3 
response genes with EIN3 binding sites in its promoter region, 
ERF1, is involved in the secondary transcription activation through 
its GCC element binding activity.23 There are several negative 
feedback mechanisms. For instance, ERS1 and ETR2 are transcrip-
tionally elevated as a primary response to ethylene, and then the 
newly synthesized ethylene receptors attenuate the signaling effect of 
ethylene.6,8 EBF2 is also transcriptionally activated in early ethylene 
signaling and destabilizes EIN3 in the nucleus and diminish its 
accumulation.18

Despite the well-defined genetic pathway, cellular, molecular and 
biochemical connections among individual components remain to 
be elucidated in ethylene signaling. For example, an elevated level of 
MAPK-like activities have been reported in the loss-of-function ctr1 
mutant, strongly implicating positively acting MAPKs are involved 
in ethylene signaling (Fig. 1).24,25 However, the MAPK cascade 
components have not been unequivocally identified.26

Here we have elucidated MAPK cascades in ethylene signaling 
using an integrative approach combining molecular, cellular, compu-
tational and genetic tools via exploring genomic information 
available in Arabidopsis.27,28 First, cell-based MAPK activity screen 
and ethylene-specific reporter assay facilitated by constitutively 
ethylene responsive ctr1 cells indicated the activity of antagonistic 
MAPK cascades in ethylene signaling: MKK9-MPK3/6 comprises 
positive-acting MAPK cascades, whereas CTR1 initiates negative-
acting ones. Consistently, loss-of-function mkk9 shows a broad 
spectrum of ethylene insensitivity for the typical triple response, 
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primary gene activation, ethylene-dependent growth inhibition and 
senescence promotion, as well as hypersensitivity to glucose and 
salt. The epistatic analysis using a transgenic approach indicates that 
MKK9 act downstream of the receptor complexes, but upstream or 
independent of EIN2. The MKK9 localization in the nucleus upon 
signaling as well as the MAPK cascade dependent EIN3 regulation 
in the nucleus have provided compelling evidence that two antago-
nistic MAPK cascades activities are integrated into regulating EIN3 
through alternative phosphorylation, and modulating the protein 
stability and downstream transcription cascades. Significantly, this 
study establishes a new paradigm for linking complex MAPK 
cascades in controlling quantitative hormonal responses.

Since several hormone, stress and defense signals can activate 
MPK3 and MPK6 through upstream MAPK cascades in plants, it 
has long been questioned how converged MAPK signaling can secure 
their specificity. In this study, we have demonstrated that ethylene 
signaling specifically activates the MKK9-MPK3/6 modules that 
phosphorylate T174 of EIN3 and stabilize the EIN3 protein, but 
suppresses the CTR1-dependent cascades phosphorylating T592 
of EIN3 that enhances the protein degradation. Only when both 
MAPK modules are regulated simultaneously, ethylene signaling 
can be appropriately executed in plants. This explains the broad but 
relatively weak ethylene insensitivity of mkk9 lacking only one part of 
two MAPK cascades involved in ethylene signaling. Likewise, mkk9 
ctr1 double mutants displayed a partial but clear ethylene insensi-
tivity in light-grown seedlings. Moreover, ctr1 displays a stronger 
constitutive ethylene signaling phenotype most likely due to the acti-
vation or derepression of the MKK9-MPK3/6 cascade in addition to 
the complete loss of CTR1-dependent MAPK cascade activity.

How CTR1 regulates the MKK9-MPK3/6 modules and which 
MKKs and MPKs are involved in the CTR1 modules remain to be 
determined. In our preliminary studies, there appears to be multiple 
MKKs sharing the activity of CTR1 in suppressing ethylene-specific 
reporter expression and promoting EIN3 degradation. Some loss-
of-function mkk mutants exhibit ethylene hypersensitivity. The new 
studies have established essential cellular and genetics tools and assays 
as well as a novel conceptual foundation for more detailed molecular 
understanding of ethylene signaling. Future efforts will elucidate the 
complete and complex MAPK cascades in ethylene signaling as well 
as in other stress, defense and hormone signaling pathways.
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Figure 1. Model of antagonistic MAPK cascades in ethylene signaling. A 
hypothetical MKKK is placed upstream of MKK7/9.


