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of cell division, patterning and differentiation in Arabidopsis root 
epidermal cells.4-13

In the Arabidopsis root, meristematic epidermis cells divide into 
a particular pattern4. The cells locating over the anticlinal wall sepa-
rating two cortical cells differentiate into cells that normally bear 
root hairs (trichoblasts), whereas those lied over the outer periclinal 
cortical cell walls become hairless cells (atrichoblasts).4,5 It is known 
that root epidermal cell fate decisions are trigged by a positional cue 
from the underlying cortical cell layer, and cell fate specification and 
subsequent cell differentiation into trichoblasts and atrichoblasts are 
regulated by a complex transcription factor network that regulates 
the expression of GL2. Expression of GL2 then determines hair 
or non-hair cell fate, and it is only expressed in atrichoblasts.6-8 
This particular cell patterning is established during embryogenesis 
and maintained during postembryonically.9-12 Recent findings also 
revealed that root epidermal cell division, patterning and differ-
entiation are also modulated through regulation of root epidermis 
patterning gene expression by histone modification and chromatin 
reorganization.13-15 Chromatin restructuring at GL2 locus appears 
to be essential for position-dependent cell fate specification and root 
epidermal development. Importantly, GL2 expression and cell fate 
determination are reset in each cell cycle. It is proposed that this 
regulatory mechanism of cell fate decision may be the molecular basis 
for cellular plasticity of root epidermis.13-15

Our research examined the developmental plasticity of Arabidopsis 
root epidermis induced by salt stress.16 We have shown that salt stress 
markedly influence root epidermis development and subsequent 
root hair development. Salt stress reduces the number of non-hair 
cells and disrupts the determined pattern of root epidermis. The 
normal pattern of root epidermis is composed of two rows of hairless 
cells and one row of hair cells next to them under normal condi-
tions. However, root epidermis cell pattern become abnormal when 
exposed to salt stress (100 mM NaCl) consisting of one row hair by 
one row of non-hair cells. This observation indicates that salt stress 
changes root epidermal cell proliferation. Interestingly, by analyzing 
GL2 expression, we found that salt stress alters cell fate specification. 
Under salt stress, some trichoblasts become atrichoblasts, because 
GL2 expression was detected in these cells although they are still 
in the hair cells position. It is apparent that salt stress disturbed the 
position-dependent expression pattern of GL2 and subsequent cell 
fate decision. As a result, number of root hairs was substantially 

Developmental plasticity defines an adaptive mechanism, which 
plays a fundamental role in plant development and survival. How 
intrinsic or extrinsic factors are integrated to specify cell fates and 
subsequent organ and body building of a plant is still poorly under-
stood. By studying developmental plasticity of Arabidopsis root 
hair in response to salt stress, we have begun to understand more 
about the basis of cellular plasticity. This paper summarizes our 
recent paper in which it described salt stress induced plasticity of 
root epidermis and root hair development in Arabidopsis. Analysis 
of gene expression of the homeobox transcription factor GLABRA2 
(GL2), which determines hair/non-hair cell fate, showed that salt 
stress modulates root epidermal cell proliferation and changes the 
cell fate decisions. Furthermore, by analyzing the salt overly sensi-
tive (sos) mutants, we showed that salt-induced root hair plastic 
response is caused by ion disequilibrium and it appears to be adap-
tive mechanism. Based on the most recent discoveries, we propose 
here that chromatin remodeling and epigenetic control may be the 
basis for cell fate changes and the ultimately adaptive plasticity in 
response to transient changes of environmental conditions.

Plants, as sessile organisms, have to get along with the dynamics 
of transiently changing environmental conditions during their life-
time.1-3 Developmental plasticity is essential for stress adaptation 
in plants. Therefore, the basis of adaptation or cellular plasticity to 
varying environmental conditions is the central question of plant 
developmental biology. However, how plant cells integrate intrinsic 
and extrinsic signals to direct cell fates and to achieve unique devel-
opmental goals remains largely unknown. A model of choice to study 
cell fate control and cellular plasticity in plants is the Arabidopsis root 
epidermis development, because it is easy to study and is very suit-
able for analysis of cell differentiation and morphorgenesis. In deed, 
great progresses have been made in understanding the  regulation 
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reduced by salt stress, but the root hairs initiated in the correct site 
at apical end of a trichoblast. Furthermore, root hair tip growth was 
also inhibited by salt stress. Importantly, root epidermis exhibits a 
rapid reversible cellular plasticity where they can switch their above 
phenotypes back and forth in response to the changes of salt stress. 
The disrupted development of root epidermis can be restored during 
prolonged treatment of low level of salt (25 mM NaCl), indicating 
that an adaptive response does take place.

Our results showed that cell fate plasticity is crucial for devel-
opmental plasticity. The root meristematic epidermal cells retain 
abilities to reprogram their cell fates in response to changing external 
stimuli. Under normal conditions, trichoblasts and atrichoblasts in 
the meristematic epidemics divide transversely to form alternating 
files of hair and non-hair cells. Trichoblasts then differentiate 
root hairs, and atrichoblasts bear no hairs. Exposure to salt stress, 
ecotopic expression of GL2 is activated resulting in the cell fate 
switch and differentiation of atrichoblast in hair position. On the 
contrary, we assume that when exposed to nutrient deficiency like 
phosphorus and iron, GL2 is silenced in atrichoblasts and root hairs 
form in inappropriate positions (non-hair position). Therefore, low 
concentrations of available phosphorus and iron in the rhizosphere 
induce a significant increase in the number of root hairs to facilitate 
adaptation.17-20 It is likely that root meristematic epidermis cells 
have capacity to change their determined cell fate by regulating the 
activity of the homeotic genes, such as GL2, during development 
in response to varying environmental stimuli. Such developmental 
plasticity has been observed in other systems, such as Drospohila and 
mammals.21-24 For example, activation of certain homeotic genes 
results in cell fate switch and transdetermination of different organs 
during development, and epigenetic control of chromatin assembly 
has been proposed to be the basis to establish or to maintain deter-
mined states.

Our results and the recent discoveries support the notion that 
chromatin remodeling and epigenetic control is the molecular basis 
of the plasticity in cell fate switch of root epidermis in response to 
changing environment conditions. In the case of salt stress induced 
cell fate changes of root epidermis, it is likely that salt stress, when the 
salt signal is sensed and tranduced through signaling pathways, such 
as the SOS pathway,25-27 in combination with other cellular factors, 
influences chromatin states, which in turn alter cell fate specification, 
cell division and root epidermis patterning in Arabidopsis (Fig. 1). 
Thus, chromatin remodeling and epigenetic control appears to func-
tion as a general developmental tool that is used to direct cell fate and, 
consequently, to affect organ formation and morphogenesis.14,28,29 
The fact that chromatin states and cell fates are reset in each cell 
cycle during root epidermal development could easily explains why 
root hair development can rapidly adapt to a transiently changing 
environment. Thus, capacity of rapid chromatin remodeling and cell 
fate switch in response to changing environments is necessary for 
cellular adaptive plasticity to minimize damage or protect themselves 
from upcoming stress. However, we do not exclude other possibili-
ties in regulating stress induced celluar plasticity of root epidermis. 
The mechanisms by which salt signal induces chromatin remodeling 
of root meristematic epidermis cells or by which epigenetic control 
of specific genes to coordinate adaptive response remains yet to be 
established. Further research is needed to elucidate the underlying 
mechanisms of salt induced plasticity of root epidermal development 

that might lead to a better understanding of adaptations of plants to 
salinity stress.
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