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maize were blocked in biosynthesis of the carotenoid precursors 
for de novo ABA synthesis; these mutants produce albino or pale 
green, non-viable seedlings.5 However, some mutants in Arabidopsis 
involved in the carotenoid biosynthetic pathway did not lead to 
precocious germination.6-8 In rice, relatively few phs mutants have 
been reported so far, which only two genes related to vivipary were 
cloned, without further detail study.9 Recently, we have carried out 
an intensive screening of the rice mutant population and successfully 
isolated 27 phs mutants under the high humidity paddy fields.10 This 
review focuses on more recent studies of phs or viviparous mutants, 
and discusses the complex regulation of ABA synthesis and its physi-
ological role in seed dormancy and germination.

Viviparous or Pre-Harvest Sprouting Mutants in Crops

Since pre-harvest sprouting in wheat is very intricate, most 
viviparous genes were identified through isolation of the mutants 
from other cereal crops, especially in maize. At least seven viviparous 
genes in maize including Vp1, Vp5, Vp7, Vp8, Vp10/Vp13, Vp14, 
Vp15 were cloned.2-4 The Vp5 and Vp7 genes encode enzymes in 
the carotenoid biosynthetic pathway, and the mutants showed an 
albino phenotype with a reduced ABA level.11,12 The Vp14 gene, 
on the other hand, is blocked in the first committed step in ABA 
biosynthesis, cleavage of epoxy-carotenoids to xanthoxin.13,14 The 
Vp10/Vp13 and Vp15 encode the enzymes in the molybdenum 
cofactor biosynthesis, the final step for ABA biosynthesis, oxidation 
of ABA-aldehyde to ABA by an aldehyde oxidase which requires 
molybdenum cofactor (MoCo). Vp1 encodes B3 domain tran-
scription factors, which controls multiple developmental responses 
associated with the maturation phase of seed formation.15,16 Vp8, 
encoding a putative altered meristem program1-like peptidase, regu-
lates ABA accumulation and coordinates embryo and endosperm 
development.17 In addition, some other mutant loci in maize were 
identified in the carotenoid biosynthetic pathway, such as Y1, Vp2, 
W3, Vp9 and Y9. 11,18-20

Carotenoids and phs Mutant in Rice

Recently we have identified a series of rice phs mutants simply 
categorized into three groups based on phenotypes besides vivipary, 
and the genes in four different loci were cloned in category I, that 
are all located in the carotenoid biosynthetic pathway.10 Unlike the 
viviparous mutants of maize, which accumulate carotenoids mainly 
in the endosperm, the rice counterparts accumulated carotenoids 
in seedling or embryo. It is thought that PSY, catalyzing the first 

Pre-harvest sprouting (PHS) leads to loss of grain weight and 
a reduction in the end use quality of kernels in cereals, especially 
in wheat, and PHS in rice also becomes a more and more serious 
problem recent years. Many factors are involved in the controlling 
this complex trait. Only recently, we have reported the large scale 
screening and charactersation of the rice phs mutants, providing 
insight into the molecular mechanism of pre-harvest sprouting in 
rice. It has been shown that mutations of genes in synthesis of the 
carotenoid precursors of ABA resulted in the pre-harvest sprouting, 
which is consequence of ABA deficiency, and photobleaching is 
likewise due to the absence of photoprotective carotenoids. The 
further study of all different rice phs mutants will help us to eluci-
date the complex phenomena and finally capture the target for 
improving PHS in rice or other cereals.

Introduction

The phenomenon of germination of physiologically mature cereal 
grains in the ear or panicle, usually under wet conditions shortly 
before harvest, is termed as pre-harvest sprouting (PHS) or vivipary. 
PHS occurs in many cereal crops such as wheat, barley, maize, and 
rice in most region of the world. PHS not only causes reduction of 
grain yield, but also affects the quality of grains, resulting into signifi-
cant economic losses.

During seed formation, embryo development can proceed through 
a maturation phase that allows the entry into a quiescent state, char-
acterized by acquisition of desiccation tolerance, growth arrest and 
the entry into a dormancy period of variable length that is broken 
upon germination.1 It is known that the plant hormone abscisic 
acid (ABA) is strongly involved in this process, but the mechanism 
is still not fully understood. It was found that ABA levels are low 
during embryogenesis, increase during the maturation phase, and 
then decrease when seed desiccation. So far a number of mutants 
with reduced capacity to synthesize ABA have been described, such 
as flc, not and sit in tomato; aba1 in Nicotiana plumbaginifolia; aba1, 
aba2 and aba3 in Arabidopsis; and viviparous mutants Vp5, Vp7, 
Vp10/Vp13, Vp14, Vp15 in maize.2-4 Most viviparous mutants in 
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committed step in carotenogenesis, is rate-limiting at 
least in many non-green tissues.21 There are three PSYs 
in rice, which OsPSY1 and OsPSY2 involved in caro-
tenoid biosynthesis in photosynthetically active tissues, 
while OsPSY3 is devoted to abiotic stress-induced ABA 
formation. Interestingly, the transcripts for all three PSYs 
were not detected in rice endosperm.22 Therefore, the 
carotenoids do not accumulate in the endosperm of rice 
phs mutants. To this end, it is not surprising that we didn’t 
identify any psy mutants in our large scale screening for 
phs mutants simply due to gene redundancy.

Carotenoids are integral and essential components 
of the photosynthetic membranes in all plants. In the 
chloroplast, they function in the protection against 
photo-oxidative damage and participate in the light 
harvesting process.23 The rice phs mutants in the carote-
noids biosynthetic pathway showed chloroplast damages, 
and phs1, phs2 and phs4 mutants are albino and lethal. 
Interestingly, the phs3 mutant can survive and showed 
‘variegated’ leaf at the tillering stage and completely leaf 
photobleaching during grain filling. The β-OsLCY RNAi 
plants also showed photobleaching leaf, and the levels of 
some PS II core proteins decreased in the plants.10 These 
results are consistent with the conclusion that carotenoids 
protect against oxidative damage.

ABA Biosynthesis and Pre-Harvest Sprouting

ABA is involved in several specific processes during 
seed development, such as the deposition of storage 
reserves, induction of primary dormancy. Evidence for the role of 
ABA in such processes has come from ABA-deficiency or -response 
mutants in Arabidopsis or maize.24 Mutations in ABA biosynthesis 
fail to induce seed dormancy and exhibit a vegetative wilty pheno-
type, such as Arabidopsis aba1 and tobacco aba2 are known to be 
impaired in ZEP (zeaxanthin epoxidase), the first enzyme identified 
as an ABA biosynthetic enzyme;25 The Arabidopsis ABA-deficient 
mutant aba4 was recently identified in a screening for paclobutrazol-
resistant germination and showed impairment in NSY (neoxanthin 
synthase).26 The maize viviparous14 (vp14) and tomato notabilis 
mutants are shown to be defective in NCED, 9-cis-epoxycarotenoid 
dioxygenase catalyzing the oxidative cleavage of xanthophylls, 9-cis-
violaxanthin and/or 9'-cis neoxanthin to produce xanthoxin.14,27 
Arabidopsis aba2 and aba3, maize vp10 and vp15, and tomato flacca 
and sitiens are typical mutants impaired in the later steps of ABA 
biosynthesis in the cytosol.28-31 By comparison, ABA-deficiency 
or -response mutants in rice were scarcely identified. At present we 
have cloned other three genes from phs mutants besides PHS1–PHS4 
genes, and they are all involved in specific ABA biosynthetic pathway. 
Further detailed characterization with these mutants is underway.

ABA Response and Pre-Harvest Sprouting

Thus far, our knowledge on the signaling elements that mediate 
the regulation of seed dormancy and germination by ABA is 
primarily derived from genetic analysis. The maize Vp1 locus was 
the first cloned gene in ABA response, and has been studied in 
detail.16 Vp1 is a multidomain transcription factor that functions 
as both an activator and a repressor depending on the promoter 

context.15 Interestingly, the missplicing of wheat Vp1 genes and rice 
Vp1 counterpart contributes to susceptibility to PHS in modern 
hexaploid wheat varieties and the sprouting susceptible rice varieties, 
respectively.32,33 ABI3 is orthologous gene of VP1 from Arabidopsis, 
vp1 and abi3 seeds share similar phenotypes including insensitivity 
to ABA, desiccation intolerance and premature activation of the 
shoot apical meristem.34 Mutations in the ABI4 and ABI5 loci 
have similar ABI3 qualitative effects on seed development and ABA 
sensitivity, but null mutations in ABI3 are more severe than those 
in ABI4 or ABI5.35

In addition, several other loci in Arabidopsis have been identi-
fied that specifically affect seed maturation and germination but do 
not appear to be directly related to hormone synthesis or signalling. 
The leafy cotyledon (LEC) class genes, including LEC1, LEC2 and 
FUS3,36 play key regulatory roles in Arabidopsis affecting important 
traits of the maturation phase during seed development and the 
establishment and maintenance of dormancy.1 However, very few 
information about the homologous genes in cereals was reported, 
which are worth for further studying.

Conclusions and Perspectives

Recent advances in ABA biosynthesis research have yielded 
substantial information on the pathways, genes and enzymes 
involved in the process.37 We have learned that ABA is the major 
hormone involved in induction and maintenance of dormancy by 
pre-harvest sprouting or viviparous mutants in rice. Based on these 
results, the phs mutants in cereals are involved within three parts in 
the ABA biosynthesis pathway (Fig. 1). Part I represents carotenoids 

Figure 1. Pre-harvest sprouting mutants in rice localized in carotenoid and abscisic acid 
biosynthetic pathway. (I) Carotenoid precursor synthesis in the early steps of ABA bio-
synthesis. (II) Specific ABA biosynthetic pathway. (III) Molybdenum cofactor biosynthesis, 
molybdenum cofactor is a factor for active AAO3. GGPP, Geranylgeranyl pyrophos-
phate; PSY, phytoene synthase; PDS, phytoene desaturase; ZDS, z-carotene desaturase; 
β-LCY, lycopene β-cyclase; ZEP, zeaxanthin epoxidase; NCED, 9-cis-epoxycarotenoid 
dioxygenase; SDR, short-chain dehydrogenase/reductase; AAO3, Abscisic aldehyde 
oxidase 3; IAO, Indole-3-acetaldehyde oxidase; NR, Nitrate reductase; Cnx1, cofactor 
for nitrate reductase and xanthine dehydrogenase 1.
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biosynthesis, maize vp5, vp7 and rice phs1-psh4 are localized in this 
part. Part II represents specific ABA biosynthesis, this part mutants 
include maize vp14, rice Osaba1. Part III is involved in molybdenum 
cofactor biosynthesis, maize vp10/vp13 and vp15 are in that part. 
We are going to identify the phs mutants involved in all three parts. 
Identification of downstream targets of ABA and the genes that regu-
late ABA biosynthesis will help us to gain deep understanding on the 
dormancy mechanisms of cereals, and how ABA represses germina-
tion and prevent pre-harvest sprouting in crops.
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