
[Plant Signaling & Behavior 3:12, 1099-1100; December 2008]; ©2008 Landes Bioscience

sources for signaling messengers.6-8 Phospholipase D (PLD) hydro-
lyzes membrane phospholipids to generate phosphatidic acids (PA), a 
signaling molecule involved in a variety of biological processes, such 
as freezing,9 auxin and vesicular trafficking,10 root hair growth,11,12 
ABA signaling in stomatal movement,13,14 and phosphorus starva-
tion.15,16 The activation of PLD and PA elevation occur in plants 
under hyperosmotic stress such as dehydration17 and salt treat-
ment.18,19 However, the physiological effect of the PLD activation 
and the role of specific PLDs in responses to salinity and water deficit 
are largely unknown.

Plant PLD consists of a family of heterogenous enzymes. 
Arabidopsis has 12 PLDs, including 10 C2-PLDs with α (3), β (2), 
γ (3), δ and ε and two PH/PX-PLDζ1 and PLDζ2.20 PLDα1 is the 
most abundant PLD in plants and is involved in plant water loss. 
PLDα1 plays an important role in stomatal movements through 
mediating ABA signaling.13,14 PLDα1-derived PA tethers ABI1 to 
membrane to sequester the negative effect of ABI1 on ABA stimu-
lated stomatal closure.13 Of the three PLDs in the α group, PLDα3 
is more distantly related to PLDα1 than is PLDα2. We have recently 
found that PLDα3 plays a positive role in hyperosmotic stress.22 
PLDα3-knockout (KO) plants are less tolerant to salt stress than 
WT plants. In addition, under water deficit conditions, PLDα3-KO 
plants flower later, whereas PLDα3-overexpressed (OE) plants 
flower earlier than WT plants. Unlike PLDα1 that is involved in 
stomatal movement through mediating ABA signaling,13,14 altera-
tion of PLDα3 does not change stomatal movement and water loss,22 
suggesting that PLDα3 is involved in hyperosmotic stress response 
in a mechanism different from that of PLDα1. PLDα3-KO plants 
are capable of ABA accumulation induced by hyperosmotic stress. 
But PLDα3-KO plants display higher levels of ABA-responsive gene 
expression and ABA inhibitions on seedling growth than WT plants. 
PLDα3-KO plants have fewer and shorter roots, whereas OE plants 
have more and longer roots than WT plants under hyperosmotic 
stress. Collectively, these results suggest that PLDα3 promotes root 
growth to enhance hyperosmotic tolerance.22

Biochemical analysis shows that PLDα3 uses multiple substrates 
with distinguishable preferences.22 Results of lipid profiling indi-
cate that PLDα3-KO plants accumulate less PA, suggesting that 
PLDα3 contributes to PA formation under hyperosmoitc stress.22 
PA has been found to be an activator of several Ser/Thr protein 
kinases involved in organismal growth. In plants, PA activates PDK1 
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to phosphorylate AGC2.1 and promotes root hair growth.12 In 
animals, PLD1-derived PA activates mammalian target of rapamycin 
(mTOR) kinase to phosphorylate downstream kinase, ribosomal S6 
kinase (S6K), PA can also directly interact with and activate S6K 
to enhance cell growth.23,24 However, the linkage between PA and 
TOR-S6K pathway in plants remains unknown. Further analysis 
shows that KO of PLDα3 renders plants lower, whereas OE plants 
have higher levels of phosphorylated S6K protein and transcripts of 
TOR and AGC 2.1 than WT under hyperosmotic stress.22 These 
results raise an intriguing question of whether PLDα3 is involved 
in the activation of Ser/Thr protein kinases, thus regulating plants 
growth and development under hyperosmotic stress.

In addition, our recent results show that alterations of PLDα3 
result in changes in glucose sensitivity (Fig. 1). When seeds are 
germinated in MS containing 3 and 6% glucose, PLDα3-KO seeds 
and seedlings are less sensitive to glucose, as indicated by the earlier 
germination and less glucose inhibition of growth, whereas OE of 
PLDα3 enhances glucose sensitivity, as indicated by delayed germina-
tion and greater inhibition of seedling growth and development (Fig. 
1). The effect of glucose on seed germination and seedling growth is 
not due to hyperosmotic stress imposed by glucose because the effect 
is opposite to that under hyperomotic stress.22 Glucose is not only a 
metabolite, but also is an important signaling molecule involved in 
growth, development and stress response.25 An Arabidopsis defect 
in glucose sensing causes plant growth retardation.25 PLDα3 may 
be involved in the crosstalk among glucose sensing, ABA response, 
and S6K activation to regulate growth and development. It will be of 
interest in future studies to investigate the complex network between 
lipid signaling, Ser/Thr protein kinase, and nutrient sensing and 
hormone response in plants.
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Figure 1. Changes in glucose sensitivity in PLDα3-KO and OE seedlings. 
Seeds were germinated in MS containing 3% and 6% glucose. Values are 
means ± SD (n = 3) of three experiments. Each genotype contained at least 
100 seeds in each experiment.


