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Plants regulate their growth and morphogenesis in response 
to gravity field, known as gravitropism. In the early process of 
gravitropism, changes in the gravity vector (gravistimulation) 
are transduced into certain intracellular signals, termed gravity 
perception. The plant hormone auxin is not only a crucial factor 
to represent gravitropism but also a potential signaling molecule 
for gravity perception. Another strong candidate for the signaling 
molecule is calcium ion of which cytoplasmic concentration 
([Ca2+]c) is known to increase in response to gravistimulation. 
However, relationship between these two factors, say which is 
in the first place, has been controversial. This issue is addressed 
here mainly based on recent progress including our latest studies. 
Gravistimulation by turning plants 180° induced a two-peaked 
[Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings 
expressing apoaequorin; only the second peak was sensitive to the 
gravistimulation. Peak amplitudes of the [Ca2+]c-increase were 
attenuated by the 10 μM auxin transport inhibitor (TIBA) and 
vesicle trafficking inhibitor (BFA), whereas the onset time and rate 
of rise of the second peak were not significantly altered. This result 
indicates that polar auxin transport is not involved in the initial 
phase of the second [Ca2+]c-increase. It is likely that the gravi-
induced [Ca2+]c-increase constitutes an upstream event of the auxin 
transport, but may positively be modulated by auxin since its peak 
amplitude is attenuated by the inhibition of auxin transport.

Signaling Molecules Involved in Plant Gravitropism

Higher plants sense gravity and orient their growth direction with 
respect to the gravity vector. In general, shoots (e.g., coleoptiles, 
hypocotyls and inflorescence stems) grow upwards and roots grow 
downwards even in darkness, a phenomenon known as gravitrop-
ism.1 Although the gravitropic morphological changes have been 

well documented, mechanisms of gravity perception and following 
signal transduction remain largely obscure. In the process of gravity 
perception, changes in the gravity vector (gravistimulation) will 
be transduced into multiple intracellular signals, which has been 
investigated since the days of Charles Darwin.2 The plant hormone 
auxin was identified as one of the signaling molecules and its redis-
tribution has been thought to be involved in gravitropic responses, 
known as Cholodny-Went theory.3 This theory proposes that asym-
metrical distribution of auxin causes differential growth, resulting 
in directional bending of organs. In fact, gravistimulation induces 
an asymmetrical auxin distribution in gravitropic organs such as 
tobacco stems,4 tomato hypocotyls,5 Arabidopsis hypocotyls6 and 
roots,7,8 which is consistent with this theory. The asymmetrical auxin 
distribution appears to be established by lateral and polar transport 
of auxin during gravistimulation. However, the underlying molecular 
and cellular mechanisms had been unknown for a long time.

Recent genetic analyses in Arabidopsis have clarified molecules 
responsible for the auxin transport and its up- and downstream 
signals.9 Pin-formed (PIN) proteins were characterized as an auxin 
efflux regulator10,11 and their localization plays an important role 
in determining the direction of auxin flux.6,12 Gravistimulation 
induces translocation of PIN3 with respect to the gravity vector in 
columella cells, possibly causing the polar auxin transport toward the 
bottom side of horizontally placed Arabidopsis roots.6,13 Molecules 
mediating the localization of PIN proteins have also been identi-
fied in Arabidopsis such as GNOM,14,15 a guanine-nucleotide 
exchange factor on ADP-ribosylation factor G protein (ARF GEF) 
and PINOID (PID),16 a Ser/Thr kinase. PID and protein phospha-
tase 2A (PP2A) modulate antagonistically the localization of PIN 
proteins through phosphorylation of PIN proteins.17 These results 
indicate that the translocation of PIN proteins modulated by PID 
and PP2A are involved in gravitropic signal transduction. Although 
changes in the gravity vector should be transduced into the activation 
of PID and PP2A in gravity perception and/or signal transduction, 
the underlying molecular mechanisms are still unclear.

Earlier studies demonstrated that gravistimulation induces changes 
in cytoplasmic pH,18,19 inositol 1,4,5-trisphosphate (InsP3)20 and 
calcium concentration ([Ca2+]c)

21 in Arabidopsis, suggesting that 
these signaling molecules are involved in the early phase of 
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gravitropic responses. Recently, [Ca2+]c-increases induced by gravis-
timulation were investigated in more detail in Arabidopsis seedlings 
expressing the Ca2+-sensitive luminescent protein, apoaequorin.22,23 
Gravistimulation by turning plants 180° induced a biphasic [Ca2+]

c-increase lasting for several minutes.21,23 The kinetic analyses of the 
[Ca2+]c-increase revealed that the initial and following slow [Ca2+]

c-increases are specific for rotational motion of the plants and changes 
in the gravity vector, respectively.23 The second [Ca2+]c-increase was 
observed only in hypocotyls and petioles,23 which are spatially 
related to the shoot gravitropic organs.1,24 Furthermore, increases in 
the gravitational acceleration by centrifugation caused a monophasic 
[Ca2+]c-increase lasting for several minutes in Arabidopsis seedlings, 
of which time-course closely resembles the second [Ca2+]c-increase 
by 180°-gravistimulation.22 The presentation time, a minimum 
time of gravistimulation to elicit gravitropism, is estimated at less 
than several minutes in a variety of species,25 indicating that gravity 
perception is carried out in this period. Collectively, the second 
[Ca2+]c-increase may also be eligible to be a potential candidate for 
the signaling event of gravity perception in shoots of Arabidopsis 
seedlings.

Although these two factors, auxin and [Ca2+]c, seem to be critical 
for gravity perception,26,27 their relationship is poorly understood. 
We consider this issue here mainly based on our recent results 
regarding the effects of auxin-transport and vesicle-trafficking inhibi-
tors on the [Ca2+]c-increase induced by gravistimulation.

Gravi-Induced Auxin Transport and [Ca2+]c-Increase

An earlier work showed that the biphasic [Ca2+]c-increase induced 
by 135°-gravistimulation is strongly suppressed by the conven-
tional auxin transport inhibitors, naphthylphthalamic acid (NPA) 
and 2,3,5-triiodobenzoic acid (TIBA), at the concentration of 100 
μM.21 We confirmed the inhibitory effect of TIBA on the [Ca2+]

c-increase at a lower concentration (10 μM) in our setup,23 since 
the specificity of these inhibitors is uncertain at higher concentra-
tions. Furthermore, effects of the fungal toxin brefeldin A (BFA), a 
vesicle trafficking inhibitor, on the [Ca2+]c-increase were examined to 
clarify the relationship between the [Ca2+]c-increase and membrane 
trafficking. Arabidopsis thaliana seedlings expressing the Ca2+-
sensitive luminescent protein, apoaequorin, were mounted under a 
photomultiplier tube in a light-tight dark box and were subjected to 
gravistimulation. Peak amplitudes of the initial and second [Ca2+]

c-increases induced by 180°-gravistimulation were attenuated by 
extracellularly applied TIBA and BFA, whereas the rising phase of 
the second [Ca2+]c-increase including its onset and rate of rise was 
not significantly affected (Fig. 1A and B). It looks as if the second 
[Ca2+]c-increase is suddenly suppressed on the way to its peak by 
something caused by the inhibitors. The gravi-induced asymmetrical 
distribution of auxin is inhibited by NPA or TIBA in Tobacco 
stems,4 Arabidopsis hypocotyls and roots6,28,29 as well as by BFA in 
Arabidopsis roots.7 Exogenously applied auxin (e.g., IAA and 2,4-D) 
causes a [Ca2+]c-increase in maize coleoptiles, parsley hypocotyls30 
and Arabidopsis seedlings.21 Therefore, it seems plausible that the 
asymmetrically distributed auxin causes the second [Ca2+]c-increase 
during gravistimulation, as discussed previously.21 However, our 
kinetic analysis below proposes an alternative interpretation of these 
observations.

The inhibitory effects of TIBA and BFA on the auxin redis-
tribution are due to an inhibition of trafficking of membrane 
proteins such as PIN proteins between the plasma membrane and 
endosomes.6,28,29,31 The polar auxin transport will be reduced by 
inhibition of the PIN protein translocation during gravistimulation.6 
If [Ca2+]c increases in response to the polar auxin transport, TIBA 
and BFA must inhibit the rising phase of the second [Ca2+]c-increase 
through the reduction of the polar auxin flux, resulting in a delay in 
its onset and a decrease in its rate of rise. However, these inhibitors did 
not affect significantly the rising phase of the second [Ca2+]c-increase 
at least until a certain time (ca. 35 seconds after gravistimulation) as 
mentioned above (Fig. 1A inset and Table 1). Furthermore, time-
course of a [Ca2+]c-increase induced by the exogenous auxin is quite 
different from that of the gravi-induced second [Ca2+]c-increase; 
[Ca2+]c peaks at around 10 minutes after application of auxin and 
the [Ca2+]c-increase lasts as long as the applied auxin is present in 

Figure 1. The effects of auxin-transport and vesicle-trafficking inhibitors on 
the initial and second [Ca2+]c-increases. (A) The auxin transport inhibitor 
(TIBA) and vesicle trafficking inhibitor (BFA) were extracellularly applied to 
Arabidopsis seedlings for 2 h at the concentration of 10 μM. Each averaged 
trace shows changes in luminescence ratio induced by gravistimulation at the 
speed of 6 rpm in control (solid line; n = 39), TIBA- (closed circle; n = 16) 
and BFA-treated seedlings (open circle; n = 17). Inset shows an enlargement 
of the second [Ca2+]c-increase. (B) The peak amplitudes of the initial (left) 
and second (right) [Ca2+]c-increases are shown. Data represent means ± 
SEs, **p < 0.05; *p < 0.01, the two-tailed Student’s t-test between control 
and each TIBA and BFA-treated seedlings.
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Arabidopsis seedlings.21 These results suggest that redistribution 
of auxin is not involved in the early phase of the [Ca2+]c-increase. 
TIBA and BFA also inhibited the first [Ca2+]c-increase that appears 
to be independent of changes in the gravity vector,23 suggesting that 
these inhibitors affect directly/indirectly the molecules responsible 
for the [Ca2+]c-increase, such as Ca2+ channels rather than for the 
auxin-related gravitropic responses. Indeed, TIBA greatly reduces 
ionic currents in maize roots,32 and BFA abolishes a [Ca2+]c-gradient 
and -oscillation in pollen tubes, indicating that these inhibitors have 
multiple side effects as previously pointed out.21

Polar auxin transport was detected in tomato hypocotyls5 between 
5 and 10 minutes after gravistimulation as well as in maize coleop-
tiles between 30 and 40 minutes.33 Our gravi-induced second [Ca2+]

c-increase peaked at around 40 seconds from the start of rotation 
and declined to the basal level in approximately 5 minutes (Fig. 1A), 
which is much shorter than the time to detect changes in the polar 
auxin transport. Calcium chelators such as ethylenediaminetetra-
acetic acid (EDTA) or ethylene glycol bis(beta-aminoethyl ether) 
-N,N,N’,N’-tetraacetic acid (EGTA) inhibit basipetal auxin transport 
in sunflower stems34 and maize roots.35 Gravi-induced polar auxin 
transport and gravitropism in maize roots are almost completely 
inhibited by EGTA.36 These pharmacological results suggest that 
calcium ion plays an important role in the polar auxin transport.

PID, a modulator for localization of PIN proteins, interacts 
with two calcium binding proteins, the calmodulin-related protein 
TOUCH3 (TCH3) and PID-BINDING PROTEIN 1 (PBP1) 
that contains putative EF-hand motifs, in a calcium-dependent 
manner.37 Autophosphorylation of PID is enhanced in the presence 
of PBP1, whereas both TCH3 and PBP1 are not directly phospho-
rylated by PID, supporting the possibility that the calcium-binding 
proteins are upstream signaling molecules to regulate the PID kinase 
activity in Arabidopsis. Overexpression of PID induces an abnormal 
localization of PIN proteins and collapsed the root meristem by 
loss of auxin gradients,16,17 which was enhanced by the potential 
inhibitors of mechanosensitive calcium permeable channels, Gd3+ 
and La3+, and calmodulin inhibitor, tetracain.37 These results imply 
that [Ca2+]c negatively regulates the PID activity together with the 
calcium-binding proteins and affects the localization of PIN proteins 
in Arabidopsis. In fact, PID activity is directly inhibited by Ca2+ in 
vitro.38 If the gravi-induced second [Ca2+]c-increase is an upstream 
signal of the polar auxin transport, it may facilitate the transloca-
tion of PIN proteins through the calcium-binding proteins. PIN3 
is translocated at the lower side of the plasma membrane in the 
columella cells of Arabidopsis roots within several minutes after 

gravistimulation,6 which is roughly consistent with the time course 
of the gravi-induced [Ca2+]c-increase (Fig. 1A), supporting the above 
idea that [Ca2+]c-increase is an upstream event of auxin transport. 
Further studies are required to clarify the time-course of the PIN 
protein translocation and the following asymmetrical auxin distribu-
tion during gravistimulation.

Conclusion

It is generally accepted that calcium ion plays a critical role 
in plant organ gravitropism.27 [Ca2+]c-increases in response to 
gravistimulation have been reported in a variety of plants.21,23,39 
However, the role of [Ca2+]c-increases in gravitropism and its rela-
tionship with auxin have remained largely obscure. We show here 
that the [Ca2+]c-increases are possibly involved in an auxin-related 
gravitropic responses. Based on our kinetic analysis, it is likely that 
the second [Ca2+]c-increase is involved in asymmetrical localiza-
tion of PIN proteins during gravistimulation. Moreover, the [Ca2+]

c-increase and Ca2+-dependent regulation of PID can be located 
upstream of the gravi-induced asymmetrical distribution of auxin. 
However, as discussed above, we do not exclude completely the 
possibility that the polar auxin transport causes a [Ca2+]c-increase. 
The late component of the second [Ca2+]c-increase (>ca. 35 seconds 
after gravistimulation) may be a downstream of the asymmetrical 
auxin distribution, since its peak amplitude is attenuated by the 
inhibition of auxin transport. It seems reasonable that Ca2+ interacts 
reciprocally with auxin at certain stages of gravitropic response in 
Arabidopsis. Exploring the translocation of PIN proteins with high 
time resolution is essential for understanding not only the relation-
ship between the [Ca2+]c-increase and auxin but also the molecular 
mechanisms underlying the gravity perception in plants.
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