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ABSTRACT In this paper, we give two infinite families of
explicit exact formulas that generalize Jacobi’s (1829) 4 and
8 squares identities to 4n2 or 4n(n 1 1) squares, respectively,
without using cusp forms. Our 24 squares identity leads to a
different formula for Ramanujan’s tau function t(n), when n
is odd. These results arise in the setting of Jacobi elliptic
functions, Jacobi continued fractions, Hankel or Turánian
determinants, Fourier series, Lambert series, inclusiony
exclusion, Laplace expansion formula for determinants, and
Schur functions. We have also obtained many additional
infinite families of identities in this same setting that are
analogous to the h-function identities in appendix I of Mac-
donald’s work [Macdonald, I. G. (1972) Invent. Math. 15,
91–143]. A special case of our methods yields a proof of the two
conjectured [Kac, V. G. and Wakimoto, M. (1994) in Progress
in Mathematics, eds. Brylinski, J.-L., Brylinski, R., Guillemin,
V. & Kac, V. (Birkhäuser Boston, Boston, MA), Vol. 123, pp.
415–456] identities involving representing a positive integer
by sums of 4n2 or 4n(n 1 1) triangular numbers, respectively.
Our 16 and 24 squares identities were originally obtained via
multiple basic hypergeometric series, Gustafson’s Cø nonter-
minating 6f5 summation theorem, and Andrews’ basic hyper-
geometric series proof of Jacobi’s 4 and 8 squares identities.
We have (elsewhere) applied symmetry and Schur function
techniques to this original approach to prove the existence of
similar infinite families of sums of squares identities for n2 or
n(n 1 1) squares, respectively. Our sums of more than 8
squares identities are not the same as the formulas ofMathews
(1895), Glaisher (1907), Ramanujan (1916), Mordell (1917,
1919), Hardy (1918, 1920), Kac and Wakimoto, and many
others.

1. Introduction

In this paper, we announce two infinite families of explicit
exact formulas that generalize Jacobi’s (1) 4 and 8 squares
identities to 4n2 or 4n(n 1 1) squares, respectively, without
using cusp forms. Our 24 squares identity leads to a different
formula for Ramanujan’s (2) tau function t(n), when n is odd.
These results arise in the setting of Jacobi elliptic functions,
Jacobi continued fractions, Hankel or Turánian determinants,
Fourier series, Lambert series, inclusionyexclusion, Laplace
expansion formula for determinants, and Schur functions. (For
this background material, see refs. 1 and 3–16.)
The problem of representing an integer as a sum of squares

of integers has had a long and interesting history, which is
surveyed in ref. 17 and chapters 6–9 of ref. 18. The review
article (19) presents many questions connected with represen-
tations of integers as sums of squares. Direct applications of
sums of squares to lattice point problems and crystallography
can be found in ref. 20. One such example is the computation

of the constant ZN, which occurs in the evaluation of a certain
Epstein zeta function, needed in the study of the stability of
rare gas crystals and in that of the so-called Madelung con-
stants of ionic salts.
The s squares problem is to count the number rs(n) of integer

solutions (x1, . . . , xs) of the Diophantine equation

x1
2 1 z z z 1 xs

2 5 n, [1]

in which changing the sign or order of the xi’s gives distinct
solutions.
Diophantus (325–409 A.D.) knew that no integer of the

form 4n 2 1 is a sum of two squares. Girard conjectured in
1632 that n is a sum of two squares if and only if all prime
divisors q of n with q[ 3 (mod 4) occur in n to an even power.
Fermat in 1641 gave an ‘‘irrefutable proof’’ of this conjecture.
Euler gave the first known proof in 1749. Early explicit
formulas for r2(n) were given by Legendre in 1798 and Gauss
in 1801. It appears that Diophantus was aware that all positive
integers are sums of four integral squares. Bachet conjectured
this result in 1621, and Lagrange gave the first proof in 1770.
Jacobi, in his famous Fundamenta Nova (1) of 1829, intro-

duced elliptic and theta functions, and used them as tools in the
study of Eq. 1. Motivated by Euler’s work on 4 squares, Jacobi
knew that the number rs(n) of integer solutions of Eq. 1 was
also determined by

q3~0, 2q! s :5 1 1 O
n51

`

~21!nrs~n!qn, [2]

where q3(0, q) is the z 5 0 case of the theta function q3(z, q)
in ref. 21 given by

q3~0, q! :5 O
j52`

`

q j 2. [3]

Jacobi then used his theory of elliptic and theta functions
to derive remarkable identities for the s 5 2, 4, 6, 8 cases of
q3(0,2q)s. He immediately obtained elegant explicit formulas
for rs(n), where s 5 2, 4, 6, 8. We recall Jacobi’s identities for
s 5 4 and 8 in the following theorem.
THEOREM 1.1 (JACOBI).

q3~0, 2q!4 5 1 2 8O
r51

`

~21!r21
rqr

1 1 qr

5 1 1 8 O
n51

`

~21!nF O
dun,d.0
4Bd

dGqn, [4]

and

q3~0, 2q!8 5 1 1 16O
r51

`

~21!r
r3qr

1 2 qr

5 1 1 16 O
n51

` F O
dun,d.0

(21)dd3G qn. [5]
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Consequently, we have

r4~n! 5 8 O
dun,d.0
4Bd

d and r8~n! 5 16 O
dun,d.0

~21!n1dd3, [6]

respectively.
In general it is true that

r2s~n! 5 d2s~n! 1 e2s~n!, [7]

where d2s(n) is a divisor function and e2s(n) is a function of
order substantially lower than that of d2s(n). If 2s 5 2, 4, 6, 8,
then e2s(n)5 0, and Eq. 7 becomes Jacobi’s formulas for r2s(n),
including Eq. 6. On the other hand, if 2s. 8 then e2s(n) is never
0. The function e2s(n) is the coefficient of qn in a suitable ‘‘cusp
form.’’ The difficulties of computing Eq. 7, especially the
nondominate term e2s(n), increase rapidly with 2s. The mod-
ular function approach to Eq. 7 and the cusp form e2s(n) is
discussed in ref. 13. For 2s. 8, modular function methods such
as those in refs. 22–27, or the more classical elliptic function
approach of refs. 28–30, are used to determine general for-
mulas for d2s(n) and e2s(n) in Eq. 7. Explicit, exact examples of
Eq. 7 have been worked out for 2# 2s# 32. Similarly, explicit
formulas for rs(n) have been found for (odd) s, 32. Alternate,
elementary approaches to sums of squares formulas can be
found in refs. 31–36.
We next consider classical analogs of Eqs. 4 and 5 corre-

sponding to the s 5 8 and 12 cases of Eq. 7.
Glaisher (37, 62–64) used elliptic function methods rather

than modular functions to prove the following theorem.
THEOREM 1.2 (GLAISHER).

q3~0, 2q!16 5 1 1
32
17 O

y1,m1$1
~21!m1m1

7qm1y1 [8a]

2
512
17
q~q; q)`

8 (q2; q2!`
8 , [8b]

where we have

~q; q!` :5 P
r$1
(12qr). [9]

Glaisher took the coefficient of qn to obtain r16(n). The same
formula appears in ref. 13 (equation 7.4.32).
To find r24(n), Ramanujan (ref. 2, entry 7, table VI; see also

ref. 13, equation 7.4.37) first proved Theorem 1.3.
THEOREM 1.3 (RAMANUJAN). Let (q; q)` be defined by Eq. 9.

Then

q3~0, 2q!24 5 1 1
16
691 O

y1,m1$1
~21!m1m1

11qm1y1 [10a]

2
33152
691

q(q; q)`
24 2

65536
691

q2~q2; q2!`
24. [10b]

One of the main motivations for this paper was to generalize
Theorem 1.1 to 4n2 or 4n(n 1 1) squares, respectively, without
using cusp forms such as Eqs. 8b and 10b but still using just
sums of products of at most n Lambert series similar to either
Eq. 4 or Eq. 5, respectively. This is done in Theorems 2.1 and
2.2 below. Here, we state the n 5 2 cases, which determine
different formulas for 16 and 24 squares.
THEOREM 1.4.

q3(0, 2q)16 5 1 2
32
3

~U1 1 U3 1 U5!

1
256
3

~U1U5 2 U3
2!, [11]

where

Us [ Us(q) :5 O
r51

`

(21)r21
rsqr

11qr

5 O
n51

` F O
dun,d.0

(21)d1nyddsGqn
5 O

y1,m1$1
(21)y11m1m1

sqm1y1. [12]

Analogous to Theorem 1.3, we have Theorem 1.5.
THEOREM 1.5.

q3~0, 2q!24 5 1 1
16
9

~17G3 1 8G5 1 2G7!

1
512
9

~G3G7 2 G5
2 !, [13]

where

Gs [ Gs(q) :5 O
r51

`

(21)r
rsqr

12qr

5 O
n51

` F O
dun,d.0

(21)ddsGqn
5 O

y1,m1$1
(21)m1m1

sqm1y1. [14]

An analysis of Eq. 10b depends upon Ramanujan’s (2) tau
function t(n), defined by

q~q; q!`
24 :5 O

n51

`

t(n)qn. [15]

For example, t(1) 5 1, t(2) 5 224, t(3) 5 252, t(4) 5 21472,
t(5) 5 4830, t(6) 5 26048, and t(7) 5 216744. Ramanujan
(ref. 2, equation 103) conjectured, and Mordell (38) proved,
that t(n) is multiplicative.
In the case where n is an odd integer (in particular an odd

prime), equating Eqs. 10a, 10b, and 13 yields two formulas for
t(n) that are different from Dyson’s (39) formula. We first
obtain Theorem 1.6.
THEOREM 1.6. Let t(n) be defined by Eq. 15 and let n be odd.

Then

259t~n! 5
1

23 z 32
@17 z 691s3~n! 1 8 z 691s5~n)

1 2 z 691s7~n! 2 9s11~n!]

2
691 z 22

32 O
m51

n21

[s3
†(m)s7

†~n2m! 2 s5
†~m!s5

†~n2m!], [16]

where

sr~n! :5 O
dun,d.0

dr and sr
†(n) :5 O

dun,d.0
(21)ddr [17]

Remark:We can use Eq. 16 to compute t(n) in#6n ln n steps
when n is an odd integer. This may also be done in n21« steps
by appealing to Euler’s infinite-product-representation algo-
rithm (40) applied to (q; q)`

24 in Eq. 15.
A different simplification involving a power series formu-

lation of Eq. 13 leads to the following theorem.
THEOREM 1.7. Let t(n) be defined by Eq. 15 and let n $ 3 be

odd. Then
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259t~n! 5
1
23 O
dun,d.0

(21)dd11

2
691
23 z 32 O

dun,d.0
(21)dd3(17 1 8d2 1 2d4) [18a]

2
691 z 22

32 O
m1.m2$1
m11m2#n
gcd(m1,m2)un

(21)m11m2(m1m2)3

3 ~m1
22m2

2)2 O
y1,y2$1

m1y11m2y25n

1. [18b]

Remark: The inner sum in Eq. 18b counts the number of
solutions (y1, y2) of the classical linear Diophantine equation
m1y1 1 m2y2 5 n. This relates Eqs. 18a and 18b to the
combinatorics in sections 4.6 and 4.7 of ref. 15.
In the next section, we present the infinite families of explicit

exact formulas that generalize Theorems 1.1, 1.4, and 1.5.
Our methods yield (elsewhere) many additional infinite

families of identities analogous to the h-function identities in
appendix I of Macdonald’s work (41). A special case of our
analysis gives a proof (presented elsewhere) of the two iden-
tities conjectured by Kac and Wakimoto (42); these identi-
ties involve representing a positive integer by sums of 4n2 or
4n(n 1 1) triangular numbers, respectively. The n 5 1 case
gives the classical identities of Legendre (ref. 43; see also ref.
3, equations ii and iii).
Theorems 1.4 and 1.5 were originally obtained via multiple

basic hypergeometric series (44–51) and Gustafson’s* C,

nonterminating 6f5 summation theorem combined with An-
drews’ (52) basic hypergeometric series proof of Jacobi’s 4 and
8 squares identities. We have (elsewhere) applied symmetry
and Schur function techniques to this original approach to
prove the existence of similar infinite families of sums of
squares identities for n2 or n(n 1 1) squares, respectively.
Our sums of more than 8 squares identities are not the same

as the formulas of Mathews (31), Glaisher (37, 62–64), Sier-
pinski (32), Uspensky (33–35), Bulygin (28, 53), Ramanujan
(2), Mordell (26, 54), Hardy (23, 24), Bell (55), Estermann
(56), Rankin (27, 57), Lomadze (25), Walton (58), Walfisz
(59), Ananda-Rau (60), van der Pol (61), Krätzel (29, 30),
Gundlach (22), and Kac and Wakimoto (42).

2. The 4n2 and 4n(n 1 1) Squares Identities

To state our identities, we first need the Bernoulli numbers Bn
defined by

t
et 2 1

:5 O
n50

`

Bn
tn

n!
, for utu , 2p. [19]

We also use the notation In :5 {1, 2, . . . , n}; iSi is the
cardinality of the set S, and det(M) is the determinant of the
n 3 n matrix M.
The determinant form of the 4n2 squares identity is Theorem

2.1.
THEOREM 2.1. Let n 5 1, 2, 3, . . . . Then

q3~0, 2q!4n
2
5 1 1 O

p51

n

(21)p22n21n P
r51

2n21

(r!)21

O
f,S#In

iSi5p

det(Mn,S), [20]

where q3(0, 2q) is determined by Eq. 3, and Mn,S is the n 3 n
matrix whose ith row is

U2i21, U2(i11)21, . . . , U2(i1n21)21, if i [ S

and ci, ci11, . . . , ci1n21, if i¸S, [21]

where U2i21 is determined by Eq. 12, and ci is defined by

ci :5 (21)i21
(22i 2 1)
4i

z uB2iu, for i 5 1 , 2, 3, . . . , [22]

with B2i the Bernoulli numbers defined by Eq. 19.
We next have Theorem 2.2.
THEOREM 2.2. Let n 5 1, 2, 3, . . . . Then

q3~0, 2q!4n~n11! 5 1 1 O
p51

n

(21)n2p22n213nP
r51

2n

(r!)21

O
f,S#In

iSi5p

det(Mn,S), [23]

where q3(0, 2q) is determined by Eq. 3, and Mn,S is the n 3 n
matrix whose ith row is

G2i11, G2(i11)11, . . . , G2(i1n21)11, if i [ S

and ai , ai11, . . . , ai1n21, if i¸S, [24]

where G2i11 and ai :5 ci11 are determined by Eqs. 14 and 22,
respectively.
We next use Schur functions sl(x1, . . . , xp) to rewrite The-

orems 2.1 and 2.2. Let l 5 (l1, l2, . . . , lr, . . .) be a partition
of nonnegative integers in decreasing order, l1 $ l2 $ . . . $
lr . . . , such that only finitely many of the li are nonzero. The
length ,(l) is the number of nonzero parts of l.
Given a partition l 5 (l1, . . . , lp) of length #p,

sl~x! ; sl~x1, . . . , xp! :5
det~xi

lj1p2j !

det~xi
p2j !

[25]

is the Schur function (12) corresponding to the partition l.
[Here, det(aij) denotes the determinant of a p 3 p matrix with
(i, j)th entry aij]. The Schur function sl(x) is a symmetric
polynomial in x1, . . . , xp with nonnegative integer coefficients.
We typically have 1 # p # n.
We use Schur functions in Eq. 25 corresponding to the

partitions l and n, with

lr :5 ,p2r11 2 ,1 1 r 2 p

and nr :5 jp2r11 2 j1 1 r 2 p,

for r 5 1, 2, . . . , p, [26]

where the ,r and jr are elements of the sets S and T, with

S :5 $,1 , ,2 , z z z , ,p%

and Sc :5 $,p11 , z z z , ,n%, [27]

T :5 $ ji , j2 , z z z , jp%

and Tc :5 $ jp11 , z z z , jn%, [28]

where Sc :5 In2 S is the compliment of the set S. We also have

(~S! :5 ,1 1 ,2 1 z z z 1 ,p

and (~T! :5 j1 1 j2 1 z z z 1 jp. [29]

Keeping in mind Eqs. 25–29, symmetry and skew-symmetry
arguments, row and column operations, and the Laplace

*Gustafson, R. A., Ramanujan International Symposium on Analysis,
Dec. 26–28, 1987, Pune, India, pp. 187–224.
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expansion formula (9) for a determinant, we now rewrite
Theorem 2.1 as Theorem 2.3.
THEOREM 2.3. Let n 5 1, 2, 3, . . . . Then

q3~0, 2q)4n2 5 1 1 O
p51

n

(21)p22n21n P
r51

2n21

(r!!21

3 O
y1, . . . ,yp$1

m1.m2.z z z.mp$1

(21)y11z z z1yp

z ~21)m11z z z1mpqm1y11z z z1mpyp P
1#r,s#p

(mr2 2 ms2)2

z ~m1m2 z z z mp) O
f,S,T#In
iSi5iTi5p

(21!(~S)1((T))zdet~Dn2p,Sc,Tc)

z ~m1m2 z z z mp)2,112j124sl(m1
2, . . . , mp

2)sv(m1
2, . . . , mp

2), [30]

where q3(0, 2q) is determined by Eq. 3; the sets S, Sc, T,
and Tc are given by Eqs. 27 and 28; S(S) and S(T) are given
by Eq. 29; the (n 2 p) 3 (n 2 p) matrix Dn2p,Sc,Tc :5
[c(,p1r1jp1s21)]1#r,s#n2p, where the ci are determined by Eq. 22,

with the B2i in Eq. 19; and sl and sn are the Schur functions in Eq.
25, with the partitions l and n given by Eq. 26.
We next rewrite Theorem 2.2 as Theorem 2.4.
THEOREM 2.4. Let n 5 1, 2, 3, . . . . Then

q3~0, 2q)4n(n11) 5 1 1 O
p51

n

(21!n2p22n213n P
r51

2n

(r!)21

3 O
y1, . . . ,yp$1

m1.m2.z z z.mp$1

(21)m11z z z1mp

z qm1y11z z z1mpyp(m1m2 z z z mp)3 P
1#r,s#p

(mr2 2 ms2)2

z O
f,S,T#In
iSi5iTi5p

(21)((S)1((T)zdet~Dn2p,Sc,Tc)

z ~m1m2 z z z mp)2,112j124sl(m1
2, . . . , mp

2)sv(m1
2, . . . , mp

2), [31]

where the same assumptions hold as in Theorem 2.3, ex-
cept that the (n 2 p) 3 (n 2 p) matrix Dn2p,Sc,Tc :5
[a(,p1r1jp1s21)

]1#r,s#n2p, where the ai :5 ci11 are determined by
Eq. 22.
We close this section with some comments about the above

theorems. To prove Theorem 2.1, we first compare the Fourier
and Taylor series expansions of the Jacobi elliptic function
f1(u, k) :5 sc(u, k)dn(u, k), where k is the modulus. An analysis
similar to that in refs. 3, 4, and 16 leads to the relation
U2m21(2q) 5 cm 1 dm, for m 5 1, 2, 3, . . . , where U2m21(2q)
and cm are defined by Eqs. 12 and 22, respectively, and dm is
given by dm 5 [(21)mz2my22m11]z(sdyc)m(k2), where z :5
2F1(1y2, 1y2; 1; k2) 5 2K(k)yp [ 2Kyp, with K(k) [ K the
complete elliptic integral of the first kind in ref. 21, and
(sdyc)m(k2) is the coefficient of u2m21y(2m 2 1)! in the Taylor
series expansion of f1(u, k) about u 5 0.
An inclusionyexclusion argument then reduces the qx 2q

case of Eq. 20 to finding suitable product formulas for the n3
n Hankel determinants det(di1j21) and det(ci1j21). Row and
column operations immediately imply that

det(di1j21) 5 ~z2n2~ 2 1!ny22n21n!det[~sdyc!i1j21~k2!]. [32]

From theorem 7.9 of ref. 4, we have z 5 q3(0, q)2, where q 5
exp[2pK(=1 2 k2)yK(k)]. Setting z 5 q3(0, q)2 in Eq. 32 and

then taking qx 2q produces the q3(0, 2q)4n
2
in Eq. 20. The

proof of Theorem 2.1 is complete once we show that

det@~sdyc!i1j21~k2!# 5 P
r51

2n21

~r!!

and

det~ci1j21! 5 22~2n21n! z P
r51

2n21

~r!!. [33]

By a classical result of Heilermann (7, 8), more recently
presented in ref. 10 (theorem 7.14), Hankel determinants
whose entries are the coefficients in a formal power series L
can be expressed as a certain product of the ‘‘numerator’’
coefficients of the associated Jacobi continued fraction J
corresponding to L, provided that J exists. Modular transfor-
mations, followed by row and column operations, reduce the
evaluation of det[(sdyc)i1j21(k2)] in Eq. 33 to applying Hei-
lermann’s formula to Rogers’ (14) J-fraction expansion of the
Laplace transform of sd(u, k)cn(u, k). The evaluation of
det(ci1j21) can be done similarly, starting with sc(u, k) and the
relation sc(u, 0) 5 tan(u).
The proof of Theorem 2.2 is similar to Theorem 2.1, except

that we start with sc2(u, k)dn2(u, k).
Our proofs of the Kac and Wakimoto conjectures do not

require inclusionyexclusion, and the analysis involving Schur
functions is simpler than in those in Eqs. 30 and 31.
We have (elsewhere) written down the n 5 3 cases of

Theorems 2.3 and 2.4 which yield explicit formulas for 36 and
48 squares, respectively.
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Grant MDA 904-93-H-3032.

1. Jacobi, C. G. J. (1829) Fundamenta Nova Theoriae Functionum
Ellipticarum, Regiomonti, Sumptibus fratrum Bornträger; re-
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