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Abstract
Leptin is well known as a hormone important in the central control of appetitive behaviors via
receptor-mediated actions in the hypothalamus, where leptin adjusts food intake to maintain
homeostasis with the body’s energy stores. Recent evidence has shown that leptin and its receptors
are widespread in the central nervous system and may provide neuronal survival signals. This
review summarizes our current knowledge of how leptin functions in the brain and then focuses on
the ability of leptin to mitigate neuronal damage in experimental models of human neurological
disorders. Damage to the brain by acute events such as stroke, or longterm loss of neurons
associated with neurodegenerative diseases, including Parkinson’s and Alzheimer’s disease, may
be amenable to treatment using leptin to limit death of susceptible cells. Leptin-mediated pro-
survival signaling is now known to prevent the death of neurons in these models. The signaling
cascades that leptin generates are shared by other neuroprotective molecules including insulin and
erythropoietin, and are thus a component of the neurotrophic effects mediated by endogenous
hormones. Coupled with evidence that leptin dysregulation in human disease also results in
enhanced neuronal susceptibility to damage, development of leptin as a therapeutic methodology
is an attractive and viable possibility.
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Introduction
The hormone leptin was originally discovered in 1994 through its involvement in the
homeostatic regulation of body weight (Halaas, et al., 1995). The 16 kDa protein encoded by
the obese (ob) gene is primarily synthesized in adipose tissue, and was first linked to obesity
by demonstrating its importance in controlling body mass size via inhibition of appetitive
behaviors (Halaas, et al., 1995; Pelleymounter, et al., 1995). Leptin is taken into the brain
across the blood brain barrier, where its novel and initially only known functional role was
in the hypothalamus, inhibiting the arcuate nucleus. Since then, in addition to its roles in
feeding and homeostatic energy control, leptin is now known to exert significant effects on
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reproduction (Fujioka, et al., 1999), thermogenesis (Hwa, et al., 1996), synaptic plasticity
(Shanley, et al., 2001) and, more recently, neuroprotective activity in divergent brain regions
that impinges on neurodegenerative processes (Weng, et al., 2007; Zhang, et al., 2007).

These recently discovered functions have rekindled research into how the mammalian brain
responds to leptin. The potential for using leptin as a therapeutic treatment for brain injury
and neurodegenerative conditions has been spurred on by the fact that it has demonstrated
anti-apoptotic and neuroprotective effects and that its therapeutic potential and safety has
already been established for the treatment of human obesity due to leptin deficiency
(Heymsfield, et al., 1999). Here we review the known signaling mechanisms of leptin and
the current understanding of how leptin reverses the loss of brain tissue to insults that are
relevant to human diseases.

Leptin synthesis and uptake into the Brain
The amount of leptin that crosses the blood brain barrier is much less than what is found in
the periphery. After its release by adipose tissue into the blood system, the transport of leptin
across the blood brain barrier occurs via specific mechanisms, concentrating it to about 7
nM (12 ng/ml) in the cerebrospinal fluid (Kurrimbux, et al., 2004). The primary system for
transport is proposed to be saturable and transfers leptin unidirectionally from the blood and
into the brain parenchyma, while any excess leptin is cleared via the cerebral spinal fluid
(CSF) (Banks, et al., 1996; Schwartz, et al., 1996a; Banks, et al., 2000a; Maresh, et al.,
2001). Based on the high expression of particular leptin receptor isoforms in the choroid
plexus, blood vessels and leptomeninges, it is possible that some forms of the leptin receptor
itself are involved in binding and transport of leptin across the blood brain barrier (Golden,
et al., 1997; Bjorbaek, et al., 1998b; Kastin, et al., 1999). An alternate hypothesis would
utilize an altogether non-leptin or leptin receptor related carrier as the primary transporter of
circulating leptin (Banks, et al., 2002). One such protein that is believed to have leptin
transporter function is megalin, or low-density lipoprotein receptor-mediated protein-2.
Megalin is a multi-ligand receptor found on many epithelia and there is evidence that
transport of leptin across the proximal convoluted tubules of the kidney is mediated by
megalin as part of normal leptin metabolism (Hama, et al., 2004). Megalin is also found in
the choroid plexus, and has been proposed to mediate leptin entry into the brain as well as
the formation of leptin resistance in neurodegenerative disease (Dietrich, et al., 2007). A
non-saturable process has also been proposed, where the increase of leptin in the cerebral
spinal fluid is at a relatively constant fraction of the blood concentration, or about 1/400,
although no specific carrier system has yet been described for this process (Fujioka, et al.,
1999). Overall, the leptin transport system functions at a level on par with other similarly
sized proteins such as the adipokine interleukin-1a (Banks, et al., 1991). Transport of leptin
is not identical throughout the brain, however. Different regions take up greater or lesser
amounts of leptin, with portions of the hypothalamus showing the highest uptake (Faouzi, et
al., 2007). Other brain areas with substantial transport include the hippocampus, cortex,
thalamus, striatum and midbrain (Banks, et al., 2000b).

In addition to adipose tissue, it is now known that leptin is also synthesized by other tissues
and organs. These include the placenta and fetus (Hoggard, et al., 1997), skeletal muscle
(Wang, et al., 1998), heart (Purdham, et al., 2004), and stomach (Bado, et al., 1998). There
is also evidence for leptin synthesis in the brain itself. In rats, brain regions that contain high
levels of leptin receptors also show leptin mRNA and protein, and which colocalize with
neurons (Morash, et al., 1999). It is yet to be determined if leptin produced endogenously by
the brain is functionally independent from that produced in the periphery. Since the
concentration of leptin is considerably low in the CSF even after exogenous
supplementation (Fujioka, et al., 1999), an endogenous source of leptin production may
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provide signaling that is more relevant to brain areas outside of the hypothalamus. Leptin
that is generated in the brain itself might conceivably signal in manners analogous to the
neurotrophins, including paracrine and autocrine release and signaling. An autocrine
function for leptin produced by the heart has been implicated in hypertrophy of myocytes
(Rajapurohitam, et al., 2003; Rajapurohitam, et al., 2006). Endogenous synthesis and release
of leptin by the brain may help explain how localized leptin production could be involved in
promoting the survival of neurons.

Production of leptin in the brain is not universal. Expression of leptin is well conserved
phylogenetically, and has been confirmed in amphibians (Boswell, et al., 2006), rat (Morash,
et al., 1999), sheep (Ehrhardt, et al., 2002), pig (Smolinska, et al., 2004) and human (Knerr,
et al., 2001). A notable exception is that expression of the leptin gene is not found in the
adult mouse brain (Zhang, et al., 1994). The species-specific expression of leptin can cause
variable or contradictory results when leptin is used in different animal models and humans.
These divergent results may argue against the functional significance of brain-produced
leptin, or may instead indicate that leptin bioavailability is different between species. This
has not yet been fully investigated although, as explained below, the capacity of soluble
leptin receptors to bind leptin may decrease available leptin in tissues. Decreased availability
of leptin to the brain is now known to be the basis for the paradoxical situation in obesity,
wherein obese individuals often have highly elevated blood levels of leptin in response to
vastly increased adipocyte mass (Schwartz, et al., 1996a). These high levels would be
expected to depress appetite, but fail to do so. Experiments demonstrate that triglycerides
can reduce leptin transport across the blood brain barrier (Banks, et al., 2004). Diminished
transport of leptin across the blood brain barrier would occur in the presence of higher
triglyceride levels in obese individuals, and is therefore thought to be directly responsible
for the lack of elevated brain leptin levels in obesity. This change in the leptin transport
system may be an adaptive response to fasting, during which the body begins to break down
and release triglycerides and where any additional anorexigenic leptin signal would be
counterproductive for longterm survival. This also explains the failure of exogenously
administered leptin to treat obesity in some individuals, as no matter how much peripheral
leptin levels are increased, it is simply prevented from entering the brain. The modulation of
leptin availability to the brain is thus more than a conjectural possibility and can alter leptin
function by unanticipated means. This may be a rationale behind some of the variable results
of experiments between species and in human trials for the treatment of obesity.

Leptin Receptor Signaling
There are six forms of the leptin receptor (ObR, a-f), and splice-variants of the gene were
first cloned from mouse choroid plexus, diabetes (db) (Tartaglia, et al., 1995; Lee, et al.,
1996; Wang et al., 1996; Guan et al., 1997; Lee, et al., 1997). The Ob receptors are members
of the interleukin-6 receptor family of the class I cytokine receptor superfamily (Baumann,
et al., 1996). There are three structural groupings that the six Ob receptors are generally
classified, the short (ObRa,c-d,f), long (ObRb) and soluble (ObRe) forms (for review, see
(Hegyi, et al., 2004). The external leptin-binding N-terminal domains are identical among all
variants. All forms except ObRe contain a transmembrane domain, and the short forms
contain truncated intracellular domains (34 amino acids long for ObRa) compared to the
long form (ObRb, 303 amino acids). The long form, which is 1162 amino acids in total
length, contains three additional tyrosine phosphorylation consensus sites on its
intracytoplasmic tail compared with the short forms (Tartaglia, 1997). It is thought that
many of the physiological actions of leptin, in particular those controlling feeding and
energy balance, are due to the long form of the leptin receptor because of its greater ability
to activate downstream signaling cascades. Mutation of the long form results in an alternate
splicing to a receptor resembling ObRa and that produces the db phenotype (Lee, et al.,
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1996; Fei, et al., 1997; Tartaglia, 1997). The short forms are less involved in leptin-activated
intracellular signaling but instead appear important in mediating the transfer of leptin from
the periphery through the blood brain barrier. The best evidence available so far proposes
that the soluble form of the receptor, ObRe, is in fact a leptin-binding variety that mediates
the bioavailability of leptin in general (Tu, et al., 2008). The ObRa and ObRc short forms
are abundantly expressed on the blood brain barrier microvessels and may be involved in the
normal transport of leptin into the brain and in the choroid plexus, where they shuttle leptin
from the brain to the cerebral spinal fluid (Tartaglia, et al., 1995; Golden, et al., 1997;
Bjorbaek, et al., 1998b). See Table 1 for summary of leptin receptor isoform functions.

Intracellular signaling by all forms of the leptin receptor is similar to the class I cytokines,
utilizing comparable cascades (Figure 2) (Bjorbaek, et al., 1997). This class of receptors
have no intrinsic enzymatic activity of their own. Upon ligand binding to first associate as
homodimers, each leptin receptor moiety forms a complex with a cytoplasmic-associated
kinase, the Janus tyrosine kinase (JAK) (Taga and Kishimoto, 1997). For the Ob receptors, it
is specifically JAK2 that associates with the ObR JAK-binding motifs and responds to leptin
binding by undergoing autophosphorylation, thereby becoming activated (Ihle, 1995). The
cascade that is initiated upon JAK2 activation is transmitted further downstream by
recruitment of a number of other signaling molecules. The major element that JAK2
phosphorylates is the transcription factor signal transducer and activators of transcription
(STAT), of which STAT3 seems to be the usual target for ObR mediated signaling
(Ghilardi, et al., 1996;Carpenter, et al., 1998), although there is some evidence in cell lines
that STAT5B can also be activated (Baumann, et al., 1996). Activation of STAT3 includes
its dimerization, which then allows it to translocate to the nucleus and influence the
expression of a number of genes, including socs3 (Bjorbaek, et al., 1998a). A negative
feedback loop exists wherein SOCS3 inhibits JAK2 signaling (Bjorbaek, et al., 2000). In
addition, another comparatively minor phosphorylation target for JAK2 is the SH2/SH3
domain-containing adaptor protein GRB2. The direct activation of GRB2 results in
increased p21RAS activity and of the Ras-Ref mitogen activated protein kinase (MEK),
which promotes extracellular signal-regulated kinase (ERK, primarily ERK1/2) activity and
induction of gene expression such as c-fos (Banks, et al., 2000a). The activation of ERK1/2
by the short forms of ObR via GRB2 recruitment is the only signaling cascades by which
they can signal. The long form of the leptin receptor, in addition to the pathways described
above, includes two additional indirect cascades by which a much greater recruitment of
GRB2 and activation of STAT3 is possible. This is due to the longer intracytoplasmic tail of
ObRb containing three tyrosine phosphorylation sites that do not exist in any of the short
forms (Bjorbaek, et al., 1997). Phosphorylation of one of these sites (Y1138) by JAK2
allows for the additional recruitment of inactive STAT3 to ObRb, and consequently greater
opportunity for phosphorylation by JAK2 (Banks, et al., 2000a). The phosphorylation of a
second extra tyrosine (Y985) similarly recruits the protein tyrosine phosphatase SHP2, yet
another target for JAK2 phosphorylation. The SHP2 phosphatase complexes with GRB2 and
subsequently enhances ERK1/2 activity. Thus, the long form of ObR has two additional
pathways with which it can further activate both of the major intracellular leptin cascades
that leptin signaling utilizes, resulting in a much greater signaling capacity than any of the
short forms.

In addition to the activation of the MAPK/ERK1/2 and STAT3 pathways, leptin receptors
are also able to signal via components of the insulin-signaling pathway (Niswender, et al.,
2003; Niswender, et al., 2004). This crosstalk is not very surprising, given that leptin and
insulin are both involved in energy homeostasis and feeding. For example, in a manner
similar to leptin, insulin injected intracerebroventricularly reduces food intake and body
weight in monkeys (Woods, et al., 1979). Insulin functions via its receptor by recruiting and
phosphorylating insulin receptor substrates (IRS), with downstream targets including the
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activation of MAPK and the phosphatidylinositol 3-kinase pathways (PI3-K), which
subsequently activates the prosurvival factor AKT/PKB (for review, see Plum et al. 2005).
A functional link between leptin and PI3-K signaling is indeed known, as leptin-induced
anorexia and PI3-K activity in the hypothalamus can be prevented by PI3-K inhibitors
(Niswender, et al., 2001). Further experimental evidence shows that the leptin receptor
interacts with IRS-1 in microglia (Tang, et al., 2007) and IRS-4 in a hypothalamic cell line
(Wauman, et al., 2007). Phosphorylation of the additional intracytoplasmic tyrosine Y1077
on ObRb is required for this latter activity. These interactions are shown in Figure 2. The
insulin signaling system is widespread in the brain, and includes brain regions of interest to
neurodegenerative diseases. For example, IRS-3 colocalizes with dopaminergic neurons in
the ventral tegmental area of the rat brain (Pardini, et al., 2006), a nucleus with a known
functioning leptin signaling system (Fulton, et al., 2006). Thus, the ability of leptin receptors
to communicate directly with the insulin receptor allows it to expand the signaling cascades
to include a third major pathway, the PI3-K.

Leptin receptor distribution and function in brain
Functional leptin receptors have been found extant in many regions of the brain. The ventral
hypothalamus, in particular the arcuate nucleus, has the greatest density of leptin receptors
(Schwartz, et al., 1996b). The high numbers of leptin receptors in the arcuate nucleus are
expected, which correlate with the functional role leptin has in modulating feeding. Leptin
also plays a role in the development of the hypothalamic brain circuits involved in feeding
and in several other brain regions including the neocortex (Udagawa and Otani, 2007). Of
further interest are the substantial numbers of ObR found in extra-hypothalamic nuclei.

The distribution of leptin receptors in other brain regions includes the piriform cortex,
thalamus, cerebellum, midbrain, hippocampus, brainstem and diffuse signals in the
neocortex (Elmquist, et al., 1998; Figlewicz, et al., 2003; Mutze, et al., 2006). The midbrain
contains two dopaminergic nuclei that have very different functional roles but neurons in
both contain significant leptin receptor expression (Figlewicz et al. 2003). One nucleus, the
ventral tegmental area, is well known for its involvement in the reward system via the
mesolimbic and mesocortical pathways, and is critical for reward behaviors (see Fields et al.
2007 for review). Leptin receptors found in the ventral tegmental area are also involved in
the central control of feeding and hedonic responses to food (Hommel, et al., 2006). This
finding not only confirms and expands leptin’s involvement for appetitive behaviors, it also
demonstrates that leptin is biologically active in extra-hypothalamic regions and can
influence behaviors specifically associated with that brain area. The dopaminergic neurons
in the substantia nigra pars compacta, the lateral group of midbrain dopamine producing
cells, are also immunopositive for leptin receptors (Figlewicz et al. 2003). The nigral
dopaminergic neurons are well known for their involvement in the control of movement
(Fisone, et al., 2007). Curr.ly, no known normal homeostatic functions have yet been
ascribed to the leptin receptors found there. Leptin is also involved in the processing of
olfactory signals, in particular during the fasting state (Julliard, et al., 2007). In both the
neocortex and hippocampus, leptin is involved in the acquisition of plasticity (Oomura, et
al., 2006; Harvey, 2007). The list of brain areas and normal functions that leptin modulates
is being expanded to include other extra-hypothalamic areas, and is likely to increase further
with continued studies.

Neuroprotection by leptin
The search for an effective therapy that slows down or even reverses neuronal damage from
brain injuries, such as the acute damage from stroke or slowly accumulated impairment from
longterm neurodegenerative processes, is ongoing. Dysregulation of growth factors,

Signore et al. Page 5

J Neurochem. Author manuscript; available in PMC 2009 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



cytokines and related prosurvival signaling molecules may be a contributing factor in the
development of neurodegeneration in Parkinson’s disease (PD) and other diseases associated
most often with aging (Enwere, et al., 2004; Levy, et al., 2005; Mattson and Magnus, 2006).
The evidence that leptin is involved in influencing the viability of cells is well documented.
Leptin can inhibit apoptotic cell death that is part of the normal life cycle of several
peripheral cell types including lymphocytes (Howard, et al., 1999; Fujita, et al., 2002),
pancreatic β-cells (Shimabukuro, et al., 1998) and hepatic stellate cells (Saxena, et al.,
2004). The very high levels of leptin seen in obesity have been linked to pathological
conditions, including prosurvival effects on colon, breast and prostate cancer (Rouet-
Benzineb, et al., 2004; Schaffler, et al., 2007) and inflammation (Gil, et al., 2007).

Experiments performed using cancer cell lines shows that leptin has direct cell death-
suppressing effects (Somasundar, et al., 2003; Hoda, et al., 2007). Neurons in culture require
the presence of neurotrophic factors or serum for survival, and the abrupt withdrawal of
either results in neuronal death. Leptin has been reported to reduce cell death caused by
serum withdrawal in neuroblastoma cells (Russo, et al., 2004) or removal of neurotrophic
factor from hippocampal neurons (Guo, et al., 2008). The neuroprotective mechanisms of
leptin appear to involve the activation of JAK2-STAT3, AKT and MEK/ERK signaling
pathways (Russo, et al., 2004; Guo, et al., 2008).

There is also growing experimental evidence that leptin has neuroprotective properties in the
central nervous system. The first studies to demonstrate that leptin has protective effects on
neuronal-like cells were on cell lines (Dicou, et al., 2001; Lu, et al., 2006). Since then, a
number of studies have extended these initial findings to include protective effects to bona
fide neurons in both in vitro and in vivo models of human disease. Leptin has been tested
clinically for use in treating leptin-deficiency, and appears to be tolerated well with minimal
side effects (Heymsfield, et al., 1999). Augmenting endogenous leptin signaling may be a
viable therapeutic strategy for the treatment of conditions or disorders that damage the brain,
including cerebral ischemia and epilepsy. Unfortunately, although neurotrophins can indeed
rescue dopaminergic neurons from neurotoxins in relevance to PD, their usefulness as a
treatment methodology for PD and other neurodegenerative diseases have shown only
limited and variable efficacy in clinical trials (Tomac, et al., 1995; Lang, et al., 2006). Since
leptin, as both a peripherally-derived and a CNS-endogenously synthesized molecule, is
involved in the normal function of the brain, exogenous manipulation of leptin signaling has
the potential to be both efficacious and well accepted by the brain. Figure 1 summarizes the
factors influencing neurodegeneration including Parkinson’s disease, stroke and epilepsy
and the relevance of leptin signaling in the brain.

Parkinson’s Disease
Halting or preventing the progression of neurodegenerative diseases by treatment with
exogenous factors has been the target of many studies, including Parkinson’s disease (PD).
This debilitating disorder is the second most prevalent neurodegenerative disease, next to
Alzheimer’s disease. A large component of PD pathogenesis, which is responsible for the
primary clinical manifestations of PD including motor disturbances, is caused by the loss of
a restricted population of dopaminergic neurons. These cells reside in the substantia nigra,
which form the nigrostriatal pathway to the striatum and play a role in the control of
movement. Leptin itself may be involved in the homeostatic regulation of the nigrostriatal
pathway. Leptin-deficient mice have lowered overall dopamine stores in midbrain dopamine
neurons, resulting in diminished neurotransmission capacity (Roseberry, et al., 2007).
Likewise, a decline in the number of D2 type dopamine receptors was found in the striatum
of obese individuals (Wang, et al., 2001). Higher body mass index is associated with
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diminished brain leptin availability, and there may be an interaction between leptin and
dopamine function in the Parkinsonian brain.

Leptin can reverse the loss of dopaminergic neurons in a commonly used model of PD that
employs the dopamine cell specific neurotoxin, 6-hydroxydopamine (6-OHDA) (Weng, et
al., 2007). In both in vitro and in vivo experimental paradigms, dopaminergic neurons and
dopamine-mediated behavior were protected from 6-OHDA induced toxicity by
exogenously administered leptin. Thus, not only were leptin-treated dopaminergic neurons
less susceptible to 6-OHDA toxicity, but increased leptin preserved the functionality of the
nigrostriatal tract for two months after treatment. Critical signaling mechanisms involved in
leptin-mediated neuroprotection of dopaminergic cells were found to be via the activation of
JAK-STAT, MEK/ERK and GRB2. Further downstream, activation of ERK1/2 and
enhanced nuclear localization of the transcription factor phospho-CREB were vital effectors.
Leptin decreased the activity of the pro-apoptotic caspases-3 and -9, as well as other markers
of apoptosis. Evidence was also shown that these neuroprotective effects occurred via ObR
receptor activation. Use of an Ob-R receptor antagonist or knockdown of the leptin adaptor
signaling proteins JAK2 or GRB2 resulted in loss of protection and loss of activation of
ERK1/2. Therefore, leptin-mediated neuroprotection in the 6-OHDA PD model did indeed
occur via the specific activation of the leptin receptor and its second messenger signaling
systems (Weng, et al., 2007).

The neurotrophin-activated signaling mechanisms are often quite complex, and the
opportunities for crosstalk to occur between multiple neurotrophin receptor-mediated
signaling pathways are common (Levy, et al., 2005; Tardito, et al., 2006). As discussed
above and shown in Figure 2, leptin can act in concert with portions of the insulin receptor
signaling cascade, in particular to increase the activity of the PI3-K pathway (Plum, et al.,
2005). Diminished expression of brain insulin receptor is found in PD and Alzheimer’s
disease (Moroo, et al., 1994; de la Monte and Wands, 2005). Therefore, reductions in the
signaling system of both leptin and insulin may have a synergistic effect on the aged brain
and contribute to the pathophysiology of neurodegenerative diseases such as PD. Leptin can
increase the protein expression levels of brain-derived neurotrophic factor (BDNF)
following leptin receptor activation (Komori, et al., 2006; Weng, et al., 2007). BDNF is a
well-known survival factor for dopaminergic neurons and is also diminished in PD
(Nagatsu, et al., 2000). BDNF functions by binding to the TrkB receptor kinase and
subsequent activation of signaling cascades that include PI3-K and MAPK/ERK; thus it
utilizes many of the same intermediary signaling molecules as leptin, including SH2 and
GRB2 (Kaplan and Miller, 2000). Since both leptin and BDNF activate common signaling
cascades, leptin may induce a form of positive feedback by increasing BDNF expression
that may in turn continue to activate those same signals. Likewise, the hematopoietic
hormone erythropoietin has also been shown to be neuroprotective in models of PD,
primarily via the activation of the PI3-K/AKT pathway (Signore, et al., 2006). The parallel
activation of these two pathways, the MAPK/ERK1/2 by leptin and PI3-K/AKT by
erythropoietin, could act in concert to produce significantly greater neuroprotection together
than either activate individually. In the periphery, leptin acts in concert with and increases
the secretion of erythropoietin to stimulate immature erythroid development (Axelsson, et
al., 2005). There is currently no direct evidence that leptin and erythropoietin can function
synergistically in the nervous system; however, the transcriptional regulator that induces
erythropoietin production, hypoxia-inducible factor-1 (Sasaki, et al., 2000), can also
transactivate the leptin gene in a trophoblast-derived cell line (Grosfeld, et al., 2002) and in
non-adipose tissue (Meissner, et al., 2005). Since the induction of erythropoietin in
dopaminergic cultures by hypoxia results in greatly enhanced dopamine-cell survival
(Studer, et al., 2000), there could well be a functional interaction between leptin- and
erythropoietin-mediated neuroprotection.
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Ischemic stroke
Ischemic stroke is a medical emergency triggered by a rapid reduction in blood supply to
localized portions of the brain, usually due to thrombosis or embolism, which leads to
neuronal dysfunction and death in the affected brain areas. Stroke is the third leading cause
of death and the leading cause of long-term disability in the United States and Europe. The
major mechanisms of neuronal death after stroke include necrosis by deprivation of oxygen
and glucose, glutamate-mediated excitotoxicity, oxidative stress and the subsequent
triggering of apoptosis (Lipton, 1999).

A successful cure for stroke has been particularly difficult to develop due in large part to the
extreme vulnerability of neurons to deprivation of oxygen and nutrition. Currently, the only
FDA-approved treatment of medication for stroke is the clot dissolving tissue plasminogen
activator (tPA), which must be administrated within three hours after the onset of ischemia.
Unfortunately, only about 5% of stroke patients have the opportunity to receive effective
tPA treatment due to the short time window for treatment and other complications of the
stroke itself. Therefore, other strategies including neuroprotection are being explored for the
treatment of stroke. Leptin may be a realistic candidate to treat stroke as it has demonstrated
neuroprotection against ischemic neuronal injury in both in vitro and in animal models of
stroke (Zhang et al. 2007).

Stroke produces significant alterations in brain tissue that survives the initial insult. Many
normal biochemical processes are altered and even become pathophysiological, producing
damage that continues to occur after the stroke event itself. Of primary concern is the
reperfusion-induced changes that accompany the resumption of blood flow into the formerly
occluded brain regions, as occurs in cardiac arrest or after tPA treatment restores blood flow.
Inhibiting these responses would potentially significantly reduce stroke-induced damage.
Several lines of evidence show that leptin can indeed target several of these processes and
diminish ischemic cell death, including excitotoxicity, oxidative stress, and apoptosis.

Neuronal excitotoxicity plays a key role in the neuronal necrosis after cerebral ischemia,
which results from excessive accumulation of glutamate around neurons. The subsequent
excessive stimulation of glutamate receptors results in cytosolic calcium overload that
indiscriminately activates calcium-dependent processes. The protective effects of leptin
against glutamatergic excitoxicity was first reported in mouse neurons by Dicou, et al
(Dicou, et al., 2001). They found that the pretreatment of primary neuronal cultures with
leptin for 20 hours rescues neurons from cell death induced by NMDA, and that the JAK2
inhibitor AG490 antagonized the neuroprotective effects of leptin. They also showed that the
co-injection of leptin intracerebrally in postnatal day 5 mouse pups reduced cortical lesion
size and white matter cysts by 50% induced by the injection of ibotenate, a glutamate
analogue. This neuroprotective effect of leptin was confirmed later by Guo, et al., who
reported that pretreatment of rat hippocampal neurons with leptin for 24 hours increased the
number of surviving neurons after NMDA treatment (Guo, et al., 2008).

Oxidative stress is a significant cause of ischemic reperfusion injury and neuronal apoptosis
following cerebral ischemia. Neuronal exposure to ferrous (Fe2+) iron can result in oxidative
stress and membrane lipid peroxidation through hydroxyl radical production. The report by
Guo, et al. (Guo, et al., 2008) demonstrated that leptin significantly improves neuronal
survival after exposure of rat hippocampal neurons to ferrous iron, and that neuroprotection
conferred by leptin is long-term.

Apoptosis is the predominant mode of neuronal death occurring due to hypoxia-ischemia in
neonate rats and in global ischemia; apoptosis also plays an important role in the
enlargement of the infarct induced by focal cerebral ischemia, especially in the so-called
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penumbral region (Zhang, et al., 2004). An anti-apoptotic role of leptin has been reported
recently in neuroblastoma cells following growth factor withdrawal (Russo, et al., 2004;
Guo, et al., 2008). In these studies, the anti-apoptotic effects of leptin required the activation
of JAK2-STAT3, MEK/ERK and PI3K/AKT signaling pathways. The down-stream of anti-
apoptotic mechanisms also includes the up-regulation of Mn-SOD and Bcl-xL (Guo, et al.,
2008) as well as down-regulation of caspase-10 and TNF-related apoptosis-inducing ligand
(Russo, et al., 2004).

All of the above-discussed studies were carried out in vitro and only examined one or two of
the many parallel mechanisms that contribute to ischemic neuronal injury in humans. The
next critical step is to determine whether leptin is efficacious in reducing damage caused by
ischemic stroke in an animal model. Our own data demonstrate that intraperitoneal
administration of leptin decreased infarct volume following middle cerebral artery occlusion
in mice (Zhang et al. 2007). Leptin protection was dose-dependent, and remained effective
even when leptin administration was delayed up to 90 min after the onset of reperfusion.
Ischemia-induced behavioral changes were also significantly reversed by leptin. Activation
of the ERK1/2 signal pathway by leptin was found to be the major protective mechanism,
and the activation of CREB and STAT3 signaling pathways were also involved.

Leptin has demonstrated neuroprotective effects against ischemic stroke, with evidence that
this protection is mediated by leptin receptors in the brain. This finding makes leptin a
potential neuroprotective agent in the treatment of human stroke events. A promising
approach might be to use leptin in tandem with tPA by administering it following tPA
treatment. This dual treatment may extend the time window of efficacy for tPA treatment,
and subsequently reduce reperfusion injury.

Epilepsy
Epilepsy is a relatively common neurological problem, and seizure activity is often
associated with neuronal cell death. There is increasing evidence that leptin is both
neuroprotective against seizures and has anticonvulsant properties in most seizure models.
The hippocampus, regarded as the brain region most susceptible to seizure activity,
expresses leptin-receptors functionally coupled to STAT3 activation (Shanley, et al., 2002a;
Guo, et al., 2008). Leptin can inhibit the firing of hippocampal neurons via activation of
large conductance calcium-activated potassium channels (BK) (Shanley, et al., 2002b).
These channels are important in determining the excitability of these neurons, and may
contribute to aberrant firing such as during seizure activity. One study has revealed,
however, that leptin can also be a proconvulsant. Using the penicillin-induced seizure
model, leptin increased epileptiform-like spike activity in rat brain (Ayyildiz, et al., 2006).

Leptin itself has in fact been implicated in epilepsy, although the mechanisms by which it
acts are not yet understood. Obesity, where high plasma leptin levels but diminished leptin
transport occurs, is a risk factor for epilepsy. The induction of leptin, however, may be one
of the benefits from epileptic patients who have been treated by being placed on the
ketogenic diet. This high fat, low carbohydrate diet can increase leptin plasma serum levels
in rats (Kinzig, et al., 2005; Thio, et al., 2006) and is anti-epileptogenic.

Recent laboratory data do support a more explicit role for leptin in preventing seizures and
neuronal toxicity. Leptin protects hippocampal neurons against excitotoxicity in leptin
deficient ob/ob mice, which are more prone to seizures (Erbayat-Altay, et al., 2006). This
model induced seizure activity by glutamate receptor activation using either glutamate in
vitro or kainate infused intracerebroventricularly (Guo, et al., 2008). Likewise, seizure
activity induced by different chemical models, in the rat neocortex with intracerebral
injections of 4-aminopyridine (a voltage-gated potassium channel inhibitor) or
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intraperitoneal injections of pentylenetetrazole (a non-competitive γ-aminobutyric acid
antagonist) into mice, was significantly diminished when the animals were pretreated with
leptin (Xu, et al., 2008). Of particular interest in this latter study is the methodology used to
deliver leptin. The hormone was delivered to mice via intranasal injection, demonstrating
that a non-invasive delivery of leptin can produce significant physiological responses in the
brain including neuroprotection. Leptin levels in both serum and brain were also measured
in this study; both increased above background levels 30 min after injection. Injections of
radiolabeled leptin have also demonstrated the feasibility of the intranasal route for leptin
delivery (Fliedner, et al., 2006). Thus, there is proof of principle that intranasal injection can
be a viable administration route for the treatment of pathophysiological and perhaps
neurodegenerative brain conditions.

Hippocampal plasticity and diabetes
In addition to its neuroprotective characteristics, leptin can modulate synaptic plasticity in
the brain. The induction of longterm potentiation and longterm depression (LTP and LTD)
has been implicated in the cellular and molecular basis of memory formation. Leptin can
alter learning and memory in the rodent hippocampus by facilitating or inhibiting both LTP
and LTD (Shanley, et al., 2001; Li, et al., 2002; Durakoglugil, et al., 2005), and similarly, in
the retention of behavioral tasks (Farr, et al., 2006). Several direct mechanisms are known to
contribute to these effects. One is leptin-induced functional enhancement of NMDA
receptors, which are critically involved in most models of learning and memory (Oomura, et
al., 2006). Another is hippocampal neuron hyperpolarization by leptin-activation of the BK
potassium channels (Shanley, et al., 2002b). In addition to these signaling effects, structural
remodeling of hippocampal dendritic processes, also associated with synaptic plasticity, is
sensitive to leptin via NMDA receptors and MEK/ERK signaling pathways (O'Malley, et al.,
2007).

If leptin can induce hippocampal plasticity, then the converse situation, where deficient
leptin signaling contributes to pathophysiology in neuronal plasticity, might also be true. A
lack of proper leptin signaling results in memory impairment and neuronal excitability and
has been well characterized in the leptin receptor deficient db/db mice and Zucker fa/fa rats
(Li, et al., 2002). These animal lines show deficiencies in neuronal and behavioral plasticity
comparable to those found in rats with streptozotocin-induced diabetes (Biessels, et al.,
1996; Biessels, et al., 1998) as well as in both type I (insulin deficiency) and type II (insulin
resistance) diabetes in humans (Desrocher and Rovet, 2004; Greenwood and Winocur, 2005;
Messier, 2005). Since the deficiencies in hippocampal plasticity in these cases are
independent of insulin levels, per se, they may instead be due to the loss of leptin and insulin
functioning in concert, as insulin also modulates activity-dependent hippocampal NMDA
receptor function (van der Heide, et al., 2005).

Other neurophysiological changes occurring in both animal models of diabetes and diabetics
contribute to altered neuronal plasticity. In particular, the hypothalamic pituitary adrenal
(HPA) axis is very sensitive and is overactive in diabetes (Tsigos, et al., 1993; see Convit,
2005 for review). Because of increased HPA axis tone, glucocorticoid and, specifically,
cortisol levels are elevated, which are negatively correlated with learning and memory
during stress and disease states (Oei, et al., 2006; Bruehl, et al., 2007; and see Leonard, 2007
for review). The hippocampus is most sensitive to the harmful effects of high
glucocorticoids, and in diabetes, the hippocampus is even more vulnerable to these injurious
effects (Magarinos and McEwen, 2000). The susceptibility of neurons to damage by
enhanced glucocorticoid levels has been well documented in the brain, where longterm
stressors increase the predisposition to many pathological conditions, including diabetes,
and to impair neuronal plasticity (see Sapolsky, 2003 for review). The combination of
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enhanced stress response compounded by disease such as diabetes may then act in synergy,
and over time producing a positive feedback cycle that progressively interferes with and
degrades the normal functioning of the nervous system (Akiray, et al., 2004). Finally,
neurogenesis in the dentate gyrus, another more recently recognized hallmark of neuronal
plasticity in the adult hippocampus, is compromised in diabetic rodents (Zhang, et al., 2008).
Learning and memory deficits in diabetic rodents were restored by reinstatement of normal
physiological levels of cortisol, which also prevented the decrease in adult neurogenesis
(Stranahan, et al., 2008).

Potential involvement of leptin in other neurodegenerative diseases
Continuing research is recognizing an increased number of roles that leptin plays in various
other neurodegenerative diseases. Although leptin itself may not be a component in the
primary causative mechanism of these diseases, dysregulation of leptin function in the brain
contributes to aspects of the disease that are just now being realized. In Alzheimer’s disease,
leptin can decrease the load of Aβ protein by inhibiting β-secretase activity (Fewlass, et al.,
2004). In Huntington’s disease, patients have diminished circulating leptin levels (Popovic,
et al., 2004). When dietary restriction is used in a mouse model of Huntington’s disease,
there is decreased weight loss and an increase in brain BDNF levels, while leptin levels are
slightly above normal (Duan, et al., 2003). Not all effects of leptin are beneficial, however.
In multiple sclerosis and other inflammatory states, adipokines including leptin have
emerged as important proinflammatory hormones that can influence the progression of the
disease state (Matarese, et al., 2005; Frisullo, et al., 2007); for review, see Lago et al. (Lago,
et al., 2007). Intracerebroventricular injection of leptin can induce cyclooxygenase-2
expression in the hypothalamus, a major proinflammatory signal (Inoue, et al., 2006). As
discussed earlier, leptin is also an antiapoptotic signal for cancer cells, and the very high
levels of leptin in obesity and metabolic syndrome may contribute to the increased risk of
developing cancer under these altered metabolic states (Hsing, et al., 2007).

Conclusions
The evidence that leptin has beneficial effects in a variety of neurodegenerative diseases is
now firmly established. The widespread distribution of leptin, its receptors and leptin-
mediated functional cascades found in many parts of the brain demonstrate that leptin has
functional properties beyond its original role in appetitive behaviors and energy
homeostasis. Leptin receptors can activate several divergent signaling cascades that promote
neuroprotective effects, namely the MAPK/ERK, STAT3 transcription factor and, via
crosstalk with insulin and erythropoietin receptor components, PI3-K/AKT activity. Of
particular interest to neurodegenerative diseases associated with aging is the demonstration
that leptin can induce neurotrophic signals. Leptin treatment may be a workable therapeutic
methodology that can reverse aging or disease associated deficiency in growth factors and
helps prevent such detrimental processes as oxidative damage occurring in the aging
nervous system. The fact that leptin has already been tested and is well tolerated for the
treatment of some forms of obesity bodes well for its use in neurodegenerative disease
states.
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Figure 1. Leptin neuroprotection in the brain
Schematic illustration of the two possible sources of brain leptin and how leptin may foster
neuroprotection against ageing and disease. Adipocytes are the major leptin-producing organ
in the periphery (“Exogenous”). Peripheral leptin can be bound in the serum by soluble
leptin receptor (ObRe) and or taken up across the blood brain barrier (BBB). High levels of
triglycerides, as found with obesity, can create a form of leptin resistance by diminishing its
BBB transport, and causing very high levels of leptin to accumulate in the periphery because
of increased adipocyte production. Leptin can also be synthesized by neuronal elements in
the brain itself (“Endogenous”), although the signaling contribution made by this source of
leptin is still unknown. Signaling via leptin receptors (ObR), along with the homeostatic
contribution by the brain’s host of neurotrophins and other endogenous trophic molecules,
act to maintain longterm neuronal viability. A decrease in the neuroprotective or increase in
the harmful influences may tip the scales against susceptible neuronal populations.
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Figure 2. Leptin receptor signaling and crosstalk with the insulin and erythropoietin receptors
The leptin receptor shares several signaling cascades with other receptors found in the brain.
Here the pathways are shown along with known and possible sites of crosstalk between
them. Both the leptin and erythropoietin (EPO) receptors become functional dimers upon
ligand binding, allowing their associated JAK proteins to undergo activation and
autophosphorylation (P). Insulin receptors form a larger heterotetramer of α and β subunits,
which undergoes insulin-induced autophosphorylation. For leptin, the second messenger
kinase JAK2 contributes to several different cascades. One of its major actions is to
phosphorylate the three tyrosine residues on the ObRb intracytoplasmic loop. The Y1138
residue will recruit STAT3 monomers, aiding in STAT3 activation by increasing the rate of
phosphorylation and dimerization by JAK2. The phosphorylation of Y985 instead recruits
SHP2 (also phosphorylated by JAK2), binds and activates GRB2. Activation of the SHP2/
GRB2 complex will then activate the MEK/ERK signaling pathway, a pathway shared by all
three receptor cascades shown above. One interesting consequence of activation of this
particular pathway that we have demonstrated includes the leptin/ERK-dependent
stimulation of BDNF production, which occurs via phosphorylation of the transcription
factor CREB. JAK2 also directly activates two molecules, STAT3 and (to a smaller degree)
GRB2 by phosphorylation and association with SHP2. STAT3 dimerization allows it to
translocate to the nucleus and affect the transcription of a number of factors that mediate
neuronal activity, survival and a negative feedback loop on JAK2 activity via socs3. Leptin
also has a significant and more direct crosstalk with the insulin receptor via JAK2 mediated
activation of IRS1,2 and Y1077 interaction with IRS4. Insulin receptor signaling depends on
these molecules to activate effector cascades, including MEK/ERK via GRB2 and PI3-K.
Subsequent signaling by these cascades induce the prosurvival factor AKT/PKB and, further
downstream, the inhibition of GSK-3β and transcriptional control via FOXO1, which is
involved in modulation of gluconeogenic responses. Erythropoietin-mediated activation of
JAK2 activates both the MEK/ERK pathways shared by leptin and insulin, and activates
STAT5 to alter transcription. There is some evidence from cell lines (see text) that insulin
can activate STAT5 in addition to STAT3. Although not shown to occur in bona fide
neurons, the ability of JAK2 to signal via other common substrates might represent another
avenue of crosstalk between leptin, erythropoietin and other neurotrophic factors.
Abbreviations and terms used: Akt/PKB: AKT kinase/protein kinase B; CREB: cAMP
response element-binding; ERK: extracellular signal-regulated kinase; FOXO1: forkhead
transcription factor; GRB2: Growth factor receptor-bound protein 2; GSK-3β: Glycogen
Synthase Kinase-3β; IRS: insulin receptor substrate; JAK: janus tyrosine kinase; PI3-K:
phosphatidylinositol 3-kinase; MEK: mitogen-activated protein kinase kinase; PDK1,2:
pyruvate dehydrogenase kinase 1,2; SHP2: SH2 domain-containing protein-tyrosine
phosphatase PTPN11; STAT: signal transducer and activators of transcription. The initial
phosphorylation events are indicated (circled “P”), while further downstream events are
depicted as activating (black arrows) or inhibiting (dashed grey lines) the pathway. The
large, black dotted arrows denote crosstalk between the leptin, insulin and erythropoietin
receptor cascades. Additionally, the signaling elements with dual coloration further identify
the shared pathways.
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