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Human and mouse subjects tried to anticipate at which of 2
locations a reward would appear. On a randomly scheduled frac-
tion of the trials, it appeared with a short latency at one location;
on the complementary fraction, it appeared after a longer latency
at the other location. Subjects of both species accurately assessed
the exogenous uncertainty (the probability of a short versus a long
trial) and the endogenous uncertainty (from the scalar variability
in their estimates of an elapsed duration) to compute the optimal
target latency for a switch from the short- to the long-latency
location. The optimal latency was arrived at so rapidly that there
was no reliably discernible improvement over trials. Under these
nonverbal conditions, humans and mice accurately assess risks and
behave nearly optimally. That this capacity is well-developed in the
mouse opens up the possibility of a genetic approach to the
neurobiological mechanisms underlying risk assessment.

genetics � human � interval timing � optimality � statistical decision theory

Humans and other animals make decisions in the face of
uncertainties arising from both exogenous and endogenous

stochastic processes. The uncertainty about the outcome of a
coin toss is exogenous, whereas the uncertainty in your estimate
of the time elapsed since you started reading this paragraph is
endogenous. Historically, most of the research conducted in the
area of decision-making in the face of risk has focused on the
nonnormative phenomena repeatedly demonstrated in decision
making that relies on verbally or numerically specified exogenous
probabilities (1, 2).

A recent, very different approach to this problem tests sub-
jects’ ability to choose the optimal aiming point in a rapid
target-touching task in which endogenous motor variability
creates risks of either missing the positive pay-off region or
straying into a negative pay-off region (3). From the perspective
of normative statistical decision theory, the choice of an optimal
aiming point is computationally as complex or more complex
than the identification of the optimal choice in the verbal tasks.
It requires weighing both pay-off magnitudes and probabilities,
including very small probabilities at the tails of the distribution
of landing points around a target point. Surprisingly, under
most conditions, subjects rapidly identify a nearly optimal
target point (4, 5). They also optimize the timing of their motor
end-points (6, 7).

Inspired by this work, we adapted a simple timing task that
requires subjects to judge when it is time to switch from betting
on an option with a short-latency payoff to betting on an option
with a longer-latency payoff. The subjects were adult humans
and a common strain of laboratory mouse (C57/B6). The task
was essentially the same for both; they had to anticipate the
appearance of a reward at 1 of 2 locations, with often repeated
trials. On some fraction of the trials, the reward appeared in one
location after a fixed short latency; on the complementary
fraction, it appeared at the other location after a fixed longer
latency. The trials were randomly intermixed, so subjects did not
know at trial outset whether it was a short or long latency. They
began each trial by waiting at the short-latency location. If and
when they judged that the short latency had passed without a
payoff, they switched to the long-latency location. If they
switched too soon on a short trial or too late on a long trial, they

lost the reward (or, under some conditions with human subjects,
they were assessed penalty points).

The probability of a given outcome depended jointly on the
probability of a short versus a long trial and the probability of the
subject’s switching too soon or too late. Our data are the switch
latencies on the long trials, the trials when switching paid-off.
Subjects’ switch latencies varied from trial-to-trial because of the
well-established scalar variability (Weber’s law characteristic) in
estimates of elapsed duration, which is seen in both human and
nonhuman subjects (8–11); repeated estimates of the same
duration are accurate only to within roughly �15% (12). The
fraction of short trials, which varied between blocks of many
hundred trials each, was the parameter of the exogenous sto-
chastic process. The variability in a subject’s estimate of the time
elapsed in a trial and the subject’s choice of a target latency for
switching were the parameters of the Gaussian endogenous
process. From our knowledge of the objective probability of a
short trial and an estimate of the standard deviation in a subject’s
estimate of elapsed duration, it is possible to compute the
optimal target time for a switch, that is, the optimal value of the
mean switch latency. In our data analysis, we asked how closely
our estimates of the optimal switch time, T̂o, corresponded to our
estimate of the mean of the distribution of a subject’s switch
latencies, T̂.

Results
Fig. 1 shows plot T̂o, which is our estimate of the optimal mean
switch latency, versus T̂, which is our estimate of the mean of the
distribution from which the sample of observed switch latencies
was drawn, for the human (A) and mouse (B) subjects, respec-
tively. We computed the mutual regression between the 2
estimates across different conditions for individual subjects. For
human subjects, the average slope was 0.47, which was signifi-
cantly �0 [t(6) � 3.12, P � 0.05] and �1 [t(6) � 3.53, P � 0.05].
For mouse subjects, the average slope was 1.31, which was
significantly �0 (t (11) � 6.15, P � 0.0001) and not significantly
different from 1 (P � 0.18). Fig. 1C plots group averages of T̂o
and T̂ as functions of the probability of a short trial in the mouse
data.

Fig. 1 A–C show that the observed mean switch latencies
closely tracked our estimate of the optimal target latencies. The
average absolute temporal distance between the two, ( T̂ � T̂o ),
was 172 � SE 33 ms in the human subjects, which was 5% of the
3-s range of possible values that T̂ could take. In the mice
subjects, the average absolute temporal distance was 436 � SE
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60 ms, which was 7% of the 6-s range of possible values that T̂
could take.

These absolute temporal differences are not meaningful until
we take into account the statistical uncertainties surrounding the
estimates from which they derive. T̂, the mean of a sample of
switch latencies, is only an estimate of the mean of the population
from which the sample was drawn. Similarly, our values for T̂o
depend on the within-sample variability, from which an estimate
of the population SD derives. To take into account the statistical
uncertainty about the true values of the population parameters,
T and �, we plotted for each subject in each condition the
likelihood function and the relative expected-gain function on
the plane defined by the possible values of T and � (Fig. 2).

Assuming an uninformative prior, the likelihood function tells
us how likely it is that any given parameter pair, �Ti,�i�, are the
true values for the mean and variability of the subjects’ under-
lying switch-latency distribution, given the data in our sample
from this distribution. The source distributions were assumed
normal, because most of the datasets were better fit by normal
distributions than by log normal or Weibull distributions.

The expected gain at a point in the parameter plane is the
expected gain for a decision maker with known variability �i in
his/her representation of elapsed time, by using decision crite-
rion Ti. The ‘‘relative’’ expected gain is this expected gain
normalized by the expected gain for a decision maker with the
same temporal uncertainty (�i), by using the ‘‘optimal’’ decision
criterion (target switch time).

With both the relative likelihood function for T and � and the
relative expected-gain function mapped onto the common pa-
rameter plane, the subject’s optimality may be measured either
by the relative likelihood of the closest point on the ridge of the

gain function (the subject’s statistical distance from the optimal
point) or by relative expected gain at �T̂,�̂�, which is the mode of
the likelihood function, the point marked by a ‘‘�’’ in the
innermost ovals in Fig. 2. This mode is the best estimate of the
population parameters.

A second measure is the estimate of the reduction in expected
gain that the subject incurs by using a nonoptimal target latency.
From the subject’s perspective, it is the more appropriate
measure. A subject whose expected gain is 99% of the gain to be
expected from an optimal choice of target latency would ration-
ally be indifferent to the possibility that their target latency was
‘‘very significantly’’ different from the optimal target latency.

Fig. 2 shows level curves (equal-likelihood contours) of the
likelihood function, together with contours of the relative ex-
pected gain function, for 2 different conditions (one with a
human subject and one with a mouse subject). Fig. 2 also shows
the locus of the optimal decision criterion (mean switch latency)
as a function of the variability in the switch latencies. The
relative-likelihood contours are at natural log unit levels (e�1,
e�2, etc). If the innermost relative likelihood contour encom-
passes a red dot (a point on the ridge of the expected gain
function), then the statistical distance from optimality is negli-
gible. Conversely, if the outermost relative likelihood contour
does not encompass a red dot, then the difference between the
subject’s estimated decision criterion and the optimal criterion is,
from a purely statistical perspective, highly significant. Whether
this statistical difference is of any practical consequence depends
on the relative expected gain at the ‘‘�’’ in the center of the
innermost relative likelihood contour. When the ‘‘�’’ is inside
the 0.99 relative gain contour, the best estimate of the subject’s
expected gain is �99% of the maximum possible expected gain
for a subject with that degree of variability in their switch
latencies (hereafter referred to as relative score). In such cases,

1.6 2.0 2.4 2.8 3.2
1.6

2.0

2.4

2.8

3.2

3.6

2.5 3.5 4.5 5.5 6.5
2.5

3.5

4.5

5.5

6.5

0.1 .25 .5 .75 .9
3.0

3.5

4.0

5.0

5.5

6.0

4.5

Short Trial Probability

T
ri
a
l  

T
im

e
  
(s

)
O

p
ti

m
a

l S
w

it
ch

 T
im

e
 (

T
o
 )

Mean Switch Time (T )

P
ro

p
o

rt
io

n
 o

f
S

e
ss

si
o

n
s/

P
h

a
se

s

0

.25

.50

.75

1.0 improved
worsened

Humans Mice

Qs
1&4

Qs
1&4

Ds
1&10

Ds
1&10

C

Mean Switch Time (T )

D

A B

T

T
o
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the statistical distance from the optimal, whether large or small,
is of no consequence.

Human subjects’ median relative score was 0.98 (interquartile
interval: 0.02), and mice subjects’ relative score was 0.99 [inter-
quartile interval: 0.01 (excluding from the human data condi-
tions where the maximum possible expected gain was �0)]. Thus,
we conclude that both humans and mice can compute a temporal
decision criterion—a target switch time—that is sufficiently
close to the optimal so as to very nearly maximize their expected
gain.

Subjects did not appear to converge on a nearly optimal
decision criterion by trial-and-error hill-climbing processes like
those proposed by operant psychologists (13, 14) and advocated
within the reinforcement-learning tradition in computer science
(15). If they did, we should consistently observe that � T̂o � T̂ � ,
the difference between our estimate of a subject’s decision
criterion and our estimate of the optimal criterion, grew smaller
as the number of trials under a given condition increased.
However, in the great majority of cases, there was no discernible
improvement in the location of a subject’s target switch latency
over trials (Fig. 1D).

Discussion
In this simple timing task, which we believe captures the essence
of temporal decision making that confronts human and nonhu-
man animal subjects in everyday life, both humans and mice are
nearly optimal decision makers in the face of uncertainties of
both external and internal origin. This nearly optimal perfor-
mance would seem to imply that they rapidly form an accurate
representation of both their endogenous uncertainty (how good
they are) (cf. 16) and the exogenous uncertainty (the objective
risk) and that they combine these uncertainty estimates in a
normative way. The nearly optimal performance of humans in
our task contrasts with the traditional view that humans are
nonnormative decision-makers under probabilistic conditions.

Given our results it can be argued that nonrational decisions
made under probabilistic conditions in traditional decision-
making tasks derive in substantial measure from the form in
which the probabilistic information is presented to the subjects
(see also refs. 17–19). Specifically, in traditional paper–pencil
decision-making tasks, subjects are presented with the exoge-
nous probabilistic information via one-shot verbal descriptions
and asked to combine this information with other probabilistic
information and/or magnitudes. By contrast, in our task where
subjects performed near optimally, they experience both the
exogenous and endogenous uncertainty, and they must combine
these representations of uncertainty and magnitudes to arrive at
an estimate of an appropriate duration target.

We conclude that the decision-making processes might take
normative account of probabilistic input only when the proba-
bilities are derived from direct experience of the generative
stochastic product and that language-derived representations of
uncertainty may not be able to access these processes. Alterna-
tively, the linguistic interface may lead to systematic distortions
of the specified uncertainties (e.g., overestimation of the low
probabilities).

In our experiments, the output of the decision-making process
in both humans and mice was instantiated by temporally con-
trolled responses. Given the ubiquity of timing as a cognitive
domain (ranging from fish to humans), the use of a temporal
discrimination paradigm (thus temporal information processing)
as the context for decision-making under uncertainty adds a
translational character to our decision-making task. The trans-
lational nature of this cognitive domain has started to receive
increasing appreciation in preclinical research (20–21).

The similarity of the results from human and mice subjects in
this complex temporal decision-making task further supplies the
behaviorally necessary tools to study the genetic and neurobio-

logical underpinnings of risk assessment in animal models. Risk
is not an exotic aspect of a uniquely human life; risk is inherent
in life at every level of complexity. Thus, it is not far-fetched to
suppose that mechanisms for near-optimal risk assessment in
many everyday contexts evolved long ago (cf. 19). An obvious
question is whether there may exist ways of tapping into those
mechanisms to mediate the many human assessments of risk that
depend on verbal or symbolically transmitted information about
probabilities.

Methods
Subjects. Human. The subjects were undergraduate students, graduate stu-
dents, and postdoctoral volunteers at Rutgers University. There were 7 sub-
jects, 4 males and 3 females. The age of subjects ranged between 21–34. They
gave informed consent and were paid for their participation.
Mice. Twelve naïve C57BL/6N female mice (Harlan, Indianapolis, IN) were used
in this experiment. They were 8 weeks old on arrival. The mice were housed
individually in polypropylene cages. The cabinets that held the cages were lit
on a 12:12 light/dark cycle (lights on at 8:00 PM). The experiments were run
during the dark cycle. The mice were maintained at 85% of their free-feeding
weight by being fed lab chow after each session. During the sessions, they
were fed 20-mg Noyes food pellets (PJAI-0020) as a reinforcer. Water was
available ad libitum in the home cages and experimental chambers. They were
treated in accordance with the Guide for the Animal Care and Use of
Laboratory Animals (22).

Apparatus. Human. The temporal parameters, presentation of the stimulus,
and recording of the responses were controlled with a Macintosh running OS
X 10.3.9. The controlling program was written in MATLAB 7.04 by using the
Psychophysics Toolbox extensions (23).
Mice. Six operant chambers (Med Associates, ENV 307-W: 21.6 cm � 17.8
cm � 12.7 cm) inside ventilated, sound-attenuated boxes (Med Associates,
ENV-018-M: 55.9 cm � 55.9 cm � 35.6 cm) were used in this experiment.
Two opposing sidewalls were made of metal, the other 2 walls and the
ceiling of clear Plexiglas. Each chamber had a grid floor with 25 evenly
spaced metal rungs. Two pellet dispensers (ENV-203–20) were able to
deliver food to 2 cubic hoppers (Med Associates ENV-203-20, 24 mm on each
side) spaced 5 inches apart on one wall. On the opposite wall, another cubic
hopper was used to initiate trials. Along that same wall, a water bottle
protruded into the chamber. The hoppers were illuminable and equipped
with an infrared beam that detected nose pokes. A white-noise generator
delivered an 80-dB, flat 10 –25,000-Hz white noise for programmable
durations. The experiment was controlled by software (Med-PC IV, Med
Associates) that logged and time-stamped the events—the onsets and
offsets of interruptions of the IR beams in the station, the onsets and
offsets of white noise, and the delivery of food pellets. Event times were
recorded with a resolution of 20 ms.

Procedure General Procedure. There were 2 types of trials. On short trials, a
signal (a visual stimulus for humans and visual/auditory stimuli for mice)
appeared and stayed on for a short latency. The subjects were rewarded if
they made the response associated with the short latency at (or after, for
mice) the termination of the signal. On long trials, the same signal ap-
peared, but stayed on for a long latency, and the subjects were rewarded
if they made the response associated with the long latency at (or after, for
mice) the termination of the signal. The response for the long latency was
in a different location than the response for the short latency. All subjects
started their responding in the short latency location and switched to the
long latency location if and when they judged that the trial was a long trial.
If the subject emitted the long latency response at (or after, for mice) the
termination of the signal in a short trial (e.g., early switch) or the short
response at (or after, for mice) the termination of the signal in a long trial
(e.g., late switch), it was a missed trial. There were 2 parameters which were
varied, in the expectation that they would have an effect on the mean
switch latency: (i) The probability of a short trial and (ii) the Payoff Matrix;
the rewards for catching short or long latency targets and penalties for
switching early in short-latency trials and late in long-latency trials. The
latter factor was varied only with human subjects.
Humans. The short latency was 2 seconds, and the long latency was 3 seconds.
A cross (�) appeared in the middle of the computer screen to start a trial. A
press on the ‘‘V’’ key caused an open red square to appear to the left of the �.
The ‘‘B’’ key caused it to appear to the right. The open square did not stay (was
not effective in catching the target) after the key was released. Thus, the
subject was required to keep the key pressed at all times during the trial.
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Whether the trial was short or long, if the open square was in the correct
location at the time of signal termination, points were added to their score.
There were 2 types of errors: A premature switch (before the short trial
interval had elapsed) and a late switch (after the long trial interval had
elapsed). Points were deducted for either error. At the short and long latency,
a target appeared on the screen in the correct location associated with short
and long latencies, respectively. If the subject caught the target, the color of
the target was green; if the subject missed the target, the color was red.
Because of this feedback, the subjects re-experienced the short and long
durations every trial. Each subject participated in at most 20 sessions and each
session had 3 phases.

Phase 1: Training. The � appeared in the middle of the screen and stayed
on for either the short or long latency. On the first 2 presentations, the subjects
were told the correct answer (the screen printed either ‘‘Short’’ or ‘‘Long’’). For
the next 10 trials, the subjects had to classify the duration of the � by pressing
either ‘‘S’’ or ‘‘L’’ after its termination. The subjects were given feedback after
each trial. This phase ensured that the subjects learned/re-experienced the
references durations before their testing trials.

Phase 2: Practice. Subjects were asked to participate in the experiment as
previously described. No points were rewarded or deducted. The probability
of the short trial [p(S)] of this practice phase matched the probability in the
testing phase. In this phase, the subjects were expected to form an estimate of
the variability in their representation of elapsed time—in the unlikely event
that they did not bring an estimate with them to the experiment.

Phase 3: Testing. Testing consisted of 500 trials. Although subjects were
allowed to take a break after every 10 trials, they were prompted to take a
break after every 100 trials. The testing phase was identical to the practice
phase except that the goal of this phase was the maximization of the subject’s
score. The score was updated after every trial, and the results were shown to
the subject according to their assigned type-of-feedback condition. For the
first type, numerals represented their score. In this condition, after a given trial
duration (short or long), the target that appeared on the side associated with
that trial type was a filled square. In the other condition, the target was a set
of filled circles, and the number of circles represented how many points had
been gained or lost. The subjects in this feedback condition were shown their
updated score by the length of a line that ran across the screen. The cumulative
score got longer after the subject was rewarded and shorter after the subject
was penalized. The color of the line was green, if the cumulative score was
above zero, and red otherwise. Payoffs (rewards/penalties) ranged from �50
to 50 points. The probability of a short trial was also manipulated. Both of
these manipulations were made only between sessions. Type of feedback had
no effect.
Mice. This procedure is an adaptation of the switch paradigm described by
Balci et al. (24). The illumination of the control hopper (opposite the 2
feeding hoppers) signaled that a trial could be initiated. A mouse initiated
a trial by a poke into this illuminated control hopper. This response
requirement ensured that the mouse was in a fixed location at the start of
a trial. The trial-initiating poke turned off the light in the control hopper,
turned on the lights in both feeding hoppers, and turned on a white noise.
The noise went off at the end of the fixed interval for that trial (either 3 s
or 6 s). The hopper lights turned off after a nose poke on either hole at or
after the termination of the noise. A reward was delivered only if the first

nose poke at or after the termination of the noise was in the appropriate
hopper. After each trial, there was a 30-s fixed delay plus a variable interval
of 60 s (drawn from an exponential distribution) before the next trial could
be initiated. Although, in theory, mice could wait for the termination of
the temporal signal before emitting the short or long latency responses,
this did not occur during the experiment.

The feeding hopper associated with the short duration was counterbal-
anced across mice. Phases 1–4 served as training. Phases 5–7 served as the
testing phases and were the phases used in the analysis. Each phase continued
until the performance of the mouse stabilized. Unlike the human experiment,
the mouse experiment did not manipulate the payoff matrix. Only the prob-
ability of a short trial was manipulated across phases. Only the last 10 sessions
of the phases were included in the analysis.

Phase 1. Three days before the experiment, the mice were food-deprived
to 85% of their free-feeding weight. In addition, on each of these 3 days the
mice were placed in the experimental chambers for 30 min, and five 20-mg
Noyes food pellets (PJAI-0020) were left in their home cages to familiarize
them with the pellets used in the experiment.

Phases 2–4. We have found that mice do not readily discriminate a 1:2
duration ratio when it is used for the initial training set. Thus, we started
training with a 1:3 duration ratio, where the short duration was 3 s and the
long duration was 9 s. After training with this pair of temporal intervals, and
after several parameter manipulations (i.e., changing the probability of a
given trial’s occurrence), the trial duration ratio was reduced to 1:2, using a 3-s
short trial and a 6-s long trial. These values were used throughout the rest of
the experiment.

Phase 5. In phase 5, the probability of a given trial being short was 0.5. This
phase was run for 22 daily sessions.

Phase 6. In phase 6, the probability of a short trial was 0.25 for half the mice
(Group 1) and 0.75 for the other half (Group 2). This phase was run for 20 daily
sessions.

Phase 7. In phase 7, the probability of a short trial for Group 1 was 0.9,
whereas for Group 2 the probability was 0.1. This session was run for 22 daily
sessions.

Optimal Decision-Making Model. The data were compared to a model in which
animals switch from the short location to the long location at the time that
maximizes their expected gain. The expected gain function is
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� g�s � S	p�S	�1 � 
�S,T,wT		

� g�s � L	�1 � p�S		
�L,T,wT	

� g�s � L	�1 � p�S		�1 � 
�L,T,wT		

where S is the switch time (latency of the subject’s departure from the short
location), T is the subject’s target (intended) departure time (the decision
criterion), w is the subject’s Weber fraction (the constant of proportionality
relating the variability in switch latencies to the mean switch latency), p(S) is
the probability of a short trial, 1 � p(S) is the complementary probability (the
probability of a long trial), S is the short reward latency and L the long reward
latency, g(s � S) is the loss from a premature departure on a short trial, g(s �

S) is the gain from staying at the short-latency location for t � S on a short trial,
g(s � L) is the gain from departing whereas t � L on a long trial, and g(s � L)
is the loss from departing too late on a long trial. The probability of a
premature departure is p(s � S) � (S,T,wT), which is the value at S of the
cumulative Gaussian with mean T and standard deviation wT. The comple-
mentary probability is the probability of an on-time departure, p(s � S).
Similarly, the complementary probability for an on-time departure is p(s � L)
and for a too-late departure is p(s � L).

Fig. 3 illustrates the dependence of the probabilities of the different
possible outcomes on the (cumulative) distribution of the switch times.

By using the formula specified in the text, the expected gain was computed
for multiple Ts uniformly distributed between 0 and L � 1 s (L � 3 s for mice)
at small increments (e.g., 0, 0.005, 0.01, …, 3.995, 4 for humans). The T that
resulted in the maximum expected gain was defined as the optimal point of
switching. The optimal point, T, thus depends on 9 quantities. Fig. 4 illustrates
the output of this computation for different levels/conditions of exogenous
(probability of short and long trials) and endogenous uncertainty (3 of the 9
critical quantities). The other 6 quantities are the short and long durations and
the pay-off matrix (4 signed magnitudes). Only one of these quantities,
endogenous uncertainty, was estimated from the empirical data.

Note that in Fig. 4 the effect of a 2-fold change in timing imprecision on the
location of the optimal target (vertical lines) is greater than the effects of an
order-of-magnitude change in the relative likelihoods of the 2 kinds of trials.
Thus, the accurate representation of the variability in one’s timing is critical to the
determination of an optimal switch criterion. Detailed information about the
data analysis can be found in the supporting information (SI) Text and Figs. S1
and S2.
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