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Abstract
An improved finite difference (FD) method has been developed in order to calculate the behaviour
of the nuclear magnetic resonance signal variations caused by water diffusion in biological tissues
more accurately and efficiently. The algorithm converts the conventional image-based finite
difference method into a convenient matrix-based approach and includes a revised periodic boundary
condition which eliminates the edge effects caused by artificial boundaries in conventional FD
methods. Simulated results for some modelled tissues are consistent with analytical solutions for
commonly used diffusion-weighted pulse sequences, whereas the improved FD method shows
improved efficiency and accuracy. A tightly coupled parallel computing approach was also developed
to implement the FD methods to enable large-scale simulations of realistic biological tissues. The
potential applications of the improved FD method for understanding diffusion in tissues are also
discussed.

1. Introduction
Diffusion-weighted MRI (DWI) provides a means to obtain structural information on tissues
over scales that are much smaller than voxel sizes. For example, there has been extensive
research that has shown that the apparent diffusion coefficient (ADC) of tissue water changes
with tumour cellularity and necrotic fraction (Chenevert et al 1997, Sugahara et al 1999, Lyng
et al 2000, Gauvain et al 2001). Thus, ADC may potentially be used as a biomarker to
characterize and monitor a tumour’s response to treatment. Various mechanisms have been
proposed to explain changes in ADCs (Latour et al 1994, Anderson et al 2000), and some
analytical models have been previously presented to study restricted water self-diffusion
(Szafer et al 1995, Callaghan 1995, Soderman and Jonsson 1995, Stanisz et al 1997). However,
earlier attempts to relate MR signals in DWI with morphologic changes have been either
qualitative or based on simple non-realistic geometries, such as cylinders and spheres.

For better understanding of the factors that affect water diffusion in biological tissues with
more complex morphologies, numerical models have been proposed, such as Monte Carlo
(MC) (Szafer et al 1995) and image-based finite difference (FD) methods (Hwang et al
2003). The MC method tracks individual spins that undergo Brownian motion over a large
number of time steps. On the other hand, the FD method discretizes the tissue sample into a
spatial grid and updates the magnetization at each point in every time step. The MC method is
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time consuming for complex tissues because it must track a large number of spins which
encounter boundaries in the simulation in order to retrieve structural information. In contrast,
the FD method determines the spin migration probabilities at the start of the simulation, which
must therefore already contain tissue structural information. Thus, FD is usually
computationally more efficient. However, due to the failure of conventional boundary
conditions (BC) for the Bloch—Torrey equation, an edge effect artefact arises with the FD
method, which is caused by the introduction of artificial boundaries into the computational
domain (Hwang et al 2003, Chin et al 2002). This effect must either be reduced by additional
computation over an extended domain or it becomes a source of significant errors. This
shortcoming limits the practical usage of FD methods.

This paper presents a matrix-based FD method (MFD) that converts the conventional FD
approach into a matrix-based algebra. This improvement not only simplifies the FD formula
and increases the computational efficiency, but it is also easier to implement using parallel
computing. In addition, a revised periodic boundary condition has been developed which
eliminates the edge effect for any diffusion-weighted pulse sequences. This improvement
increases the computing efficiency and accuracy. Finally, to further enable large-scale FD
computing for complex tissues, an efficient tightly coupled parallel computing approach has
also been devised in order to implement the MFD with the revised periodic boundary condition.
For comparison, different parallel computing strategies are discussed. Results from some
modelled tissues are presented and these are consistent with analytical solutions. The further
potential of the method for studying water diffusion in realistic biological tissues is also
discussed.

2. Theory
2.1. Conventional finite difference method

The FD method solves partial differential equations (PDE) on a spatial grid over a series of
time steps. In our work, the main PDE is the Bloch—Torrey equation. For simplicity, only 1D
formulae are considered below, but 2D and 3D cases can be easily derived in a similar way.

Using an explicit forward-time centred-space (FTCS) discretization scheme (Fletcher 1988)
in a 1D three-point finite difference stencil (see figure 1), the transverse magnetization can be
expressed as

(1)

and

(2)

where m = Mx + iMy, i is the imaginary unit, γ is the gyromagnetic ratio for hydrogen, the
superscript n indicates the temporal indices, the subscript j indicates the spatial index, Dx
indicates the diffusion coefficients along the x direction and T2,j is the transverse relaxation
time at point (j). Equation (1) describes the transverse relaxation and the phase accumulation
during the application of diffusion-sensitizing gradients and equation (2) describes the
diffusion process itself. Since equation (1) is relatively easy to handle, the focus of this work
is on equation (2), which deals only with the diffusion of magnetization.
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Note that equation (2) assumes that diffusion coefficients are homogeneous. However, the
diffusion coefficients are not homogeneous for biological tissues and jump probabilities
(Hwang et al 2003) must be used to describe the movement of water molecules between grid
points. The jump probability is defined as the probability that a spin starts at one grid point
and migrates to another point after a time interval Δt. The explicit form of each jump probability
can be found in Hwang et al (2003). Thus, equation (2) may then be expressed in terms of the
jump probabilities as

(3)

where sj→j—1 is the jump probability from point (j) to (j — 1).

2.2. Matrix-based finite difference method
Equation (3) focuses on the individual grid points, but it can be rewritten in a more convenient
way. If we label grid points with 1, 2, 3, …, N (N is the total number of grid points, shown in
figure 3) and suppose there are impermeable barriers at boundaries (this is how conventional
FD deals with the boundaries, which causes edge effects), the FD equations with explicit FTCS
are given by

Alternatively, the matrix form of equation (2) may be written as

(4)

where Mn denotes a vector containing magnetizations and the transition matrix A, which
contains the biological tissue structural information, is given by

(5)

Note that equation (5) gives the maximum possible number of non-zero elements. If any two
grid points do not exchange water molecules in a time step, the corresponding matrix element
should be zero.

Finally, the discretized Bloch—Torrey equation for transverse magnetization using the MFD
with explicit FTCS scheme can be written as

(6)
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where I is an identity matrix with the same size of A, ⊗ denotes the element-by-element vector
multiplication and Φn is a vector describing the phase accumulation and the transverse
relaxation in every time step,

(7)

Equation (6) converts the conventional FD formulism into matrix algebra which not only
simplifies the notation, making it easier to implement into a simulation, but also increases the
computing efficiency because most of the scientific languages such as MATLAB and C/C++
have optimized packages/subroutines for computing with large matrices. Moreover, different
discretization schemes can be easily implemented using MFD. For example, MFD with the
implicit FTCS is expressed as

(8)

and with the Crank—Nicolson scheme (Fletcher 1988) it is

(9)

Another benefit from MFD is that the boundary conditions can be included in the matrix A.
Since most of the simulations deal with invariable structures, such as image-based FD
simulations, the matrix A can be determined at the start of simulation and that increases the
computing efficiency significantly. Note that A has the dimensions of N × N which is usually
extremely large and a sparse matrix should be used to avoid any possible memory allocation
problems in the simulation.

2.3. Edge effects and revised periodic boundary conditions for the Bloch—Torrey equation
Most applications of FD methods rely on three basic boundary conditions, Dirichlet, Neumann
and periodic. The first one assumes that the function values at the boundaries are predictable;
the second one assumes the fluxes across the boundaries are predictable; and the third assumes
the fluxes entering and leaving are equal. However, the applied magnetic gradients in the Bloch
—Torrey equation break down the applicability of all these conventional boundary conditions
because the magnetic gradients make the local magnetization increments dependent on
location, so that after some time of undergoing Brownian motion, neither the magnetizations
at the boundaries nor the magnetization fluxes across the boundaries are predictable and the
magnetizations in the computational domain obviously do not conserve. If an assumption of
impermeable boundaries is used, the apparent diffusion close to those artificial boundaries is
highly restricted. Therefore, the simulated signals are enhanced significantly by error. This is
the so-called edge effect, noted by Hwang et al (2003). To avoid the edge effect, they obtained
results only from the unaffected central one-third grid points for a specific diffusion time (37
ms). However, when the diffusion time increases the influence of the boundaries propagates
further into the centre of the computational domain, and then the central one-third region no
longer produces reliable data. In this case, fewer grid points can be chosen or, equivalently, an
even larger computational domain is necessary. This is either computationally expensive or a
source of significant errors. Figure 2 shows how the edge effect increases with increasing
diffusion time when using the conventional FD method.
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A possible solution to reduce the edge effect is the hybrid discretization scheme algorithm
(HDSA) (Xu et al 2006). However, HDSA still induces errors at the boundaries and, moreover,
it becomes less stable when high b values (>100 ms μm−2) are used. A revised periodic
boundary condition (RPBC) for the Bloch—Torrey equation has been developed in this paper
to eliminate the edge effect completely.

Figure 3 shows the schematic diagram of the RPBC. The length of the computational domain
is α which is the length of a unit cell. The conventional periodic boundary condition, m0 =
mN and mN+1 = m1, is obviously not correct for our problem. However, using the relation of
two corresponding points in a periodic structure (see the appendix), we obtain

Hence, the updating rules for the edge points 1 and N become

(10)

and

(11)

where s1→N and sN→1 are defined as the jump probabilities between points 1 and N as if they
were adjacent. Equations (10) and (11) are the RPBC for the 1D Bloch—Torrey equation. Since
the only assumption here is the periodic structure, this RPBC can be used for any gradient
waveforms.

The transition matrix A with the RPBC becomes

(12)

With the substitution of equation (12), the RPBC is easy to implement into equation (6) (explicit
FTCS), (8) (implicit FTCS) and equation (9) (Crank—Nicolson) for solving the Bloch—Torrey
equation.

2.4. Tightly coupled parallel computing model
The intrinsic diffusion coefficients inside cells may be different from those outside the cells
and it has already been shown that membrane permeability plays an important (maybe
dominant) role in water diffusion in biological tissues (Beaulieu and Allen 1994; Szafer et al
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1995). Therefore, the computational model should have a space resolution at least of the cellular
level. In order to probe what intracellular structures affect diffusion, the resolution must be
even greater and cells cannot be considered uniform or isotropic. Considering the small cellular
dimensions of brain tissue (e.g. 2 μm for grey matter) and relatively large spatial resolution of
DWI (>100 μm, typically), the computing problem has very large scale; >106 nodes even for
one voxel of an MRI image. Hence, a high performance computing technique is necessary to
extend numerical methods suitable to larger-scale samples. We have implemented a parallel
processing approach to address this problem.

The most time-consuming part in solving equation (6) is the matrix—vector multiplication
which therefore should be parallelized. A frequently used parallel strategy is the master—slave
model (Tu et al 2006) which can deal with numerous independent computing jobs. Each
processor computes one job at a time and all processors work independently. However, this
model might not be suitable for our problem due to the large size of our computing sample.
An alternate parallelization strategy for our problem is (Quinn 2004)

(13)

1, 2, …, denote the indices of strips calculated by corresponding processors and np is the total
number of processors. This method splits the large matrices and vectors into smaller strips and
a processor computes a strip so that the effective dimension of the problem is decreased.
However, this method requests all processors to broadcast all their results to the other
processors in every time step which is usually a bottleneck for the computing. To decrease the
communication among processors and increase the computing efficiency, a tightly coupled
parallel computing model was developed for our problem.

In this model, the whole sample tissue is first partitioned into a number of small sub-blocks
(cubes in figure 4) according to the number of processors so that each sub-block is simulated
by a single processor. Obviously, the processors are organized into a 3D Cartesian virtual
topology which is the same as the topology of sub-blocks. Every processor simulates one sub-
block using the MFD described above as if it was a single processor problem. However, the
sample partition induces new artificial boundaries between the sub-blocks which usually cause
larger errors. To avoid this influence, all of the processors should work synchronously and
communicate with adjacent processors to swap boundary information in every time step. The
effect of the new-formed artificial boundaries can be completely eliminated. For the boundaries
of the whole computational domain, RPBC should be used to eliminate the edge effect. Hence,
our tightly coupled parallel computing model does not induce any more errors in the simulation.
Note that the communication burden of the tightly coupled model is of the order of Σm,n
NmNn,(m,n = x, y, z), which is usually much less than the amount of equation (13) (NxNyNz)
and that is the reason why this model shows an increased efficiency.

All parallel computing simulations in this work were performed on the Vanderbilt University
Advanced Computing Center for Research & Education (ACCRE) cluster. The programs were
written in C with MPI (message passing interface) running on 2.0 GHz Opteron processors
and a 32-bit Linux operation system with a Gigabit Ethernet network.
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3. Simulations
3.1. Isotropic diffusion

To test the feasibility of our method, diffusion in a 1D sample of isotropic diffusion was
simulated first. Four types of diffusion-weighted pulse sequences were used: the pulse gradient
spin echo (PGSE) with short gradient approximation (PGSE-short) (Callaghan 1995), PGSE
with finite duration of gradients (PGSE-finite) (Callaghan 1997), oscillating gradient spin echo
(OGSE) with sine-modulated gradient waveforms (OGSE-sin) and OGSE with cosine-
modulated waveforms (OGSE-cos) (Parsons et al 2003, Does et al 2003). The parameters used
were diffusion coefficient D = 1 μm2 ms−1, b = 1 ms μm−2, Δx = 0.2 μm, Δt = 10-3 ms and total
number of grid points N = 201 for all sequences; time between the onsets of two gradients Δ
= TE/2 for both PGSE sequences; duration of gradient δ = 10−3 ms for PGSE-short, δ = Δ/2
for PGSE-finite and both OGSE sequences; frequency of the applied oscillating gradient f =
4/δ, i.e. 320 Hz—16 kHz for TE = 1–50 ms.

Figure 5 shows a comparison of the conventional FD and improved FD with RPBC methods
for 1D isotropic diffusion with four types of pulse sequences. The conventional FD gives larger
errors when TE increases, which shows the significant influence of the edge effect. In contrast,
the errors of the improved FD with RPBC are all smaller than 1% for all pulse sequences and
diffusion times, which confirms that the edge effect has been removed by the use of RPBC.
One interesting feature is that both OGSE sequences give much smaller errors than the PGSE
for the conventional FD method, which shows that the barrier-induced effect has been reduced.
This may be explained in terms of the relatively smaller effective diffusion time obtained by
the OGSE (Does et al 2003).

When the FD method with explicit FTCS scheme is used as the simulation algorithm, the CFL
condition (Fletcher 1988) should be satisfied to ensure the stability of the simulation, i.e., jump
probability should be smaller than or equal to 1/2, 1/4, 1/6 for 1D, 2D and 3D, respectively. In
addition, it has been found that the amplitudes of the applied magnetic gradients affect the
results: larger amplitude gradients yield large errors. Figure 6 shows this effect. All simulation
parameters are the same as above except b = 0.01–10 ms μm−2 and a dimensionless factor β is
defined as

(14)

where

(15)

Figure 6 shows that both conventional FD and the improved FD method with RPBC have
increasing simulation errors with the amplitude of gradient increasing. Furthermore, both FD
methods show the same behaviour with respect to β (noting that the results of the conventional
FD method were only taken from the central region unaffected by the edge effect), which
implies that this might be an intrinsic property when the FD algorithm is used to solve the
Bloch—Torrey equation. In practice, β < 01 is needed to obtain a simulation error smaller than
1%.

3.2. Hexagonal array of permeable cylinders
Some neural tissues, such as white matter, are often modelled as a bunch of parallel cylinders
for studying water diffusion. Exact expressions for the ADC have been published for a single
cylinder with impermeable walls (Soderman and Jonsson 1995) and with wall relaxation
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(Callaghan 1995). An analytical expression for the thermal conductivity has been obtained for
hexagonal arrays of perfectly conducting cylinders (Perrins et al 1979). Thermal conductivity
and diffusion are analogous transport properties, so an analytical expression for the transverse
ADC of hexagonal arrays of cylinders with perfect diffusivities at the cylinder boundaries may
be obtained as (Hwang et al 2003)

(16)

where

(17)

and Di, De are diffusion coefficients inside the cylinders (intra-cellular space) and outside the
cylinders (extra-cellular space), respectively, and f is the volume fraction of the cylinders.

Figure 7 shows the cross-section of a hexagonal array of cylinders simulating white matter
axons. Cylinders (grey in figure 7) are axons and the surrounding matrix (white) is extra-
cellular space. To compare with the analytical results, the myelin was assumed to be non-space
occupying and with infinite permeability, and the diffusion time is very long (TE = 50 ms).
The conventional FD method should simulate a much larger image to avoid the edge effect,
whereas the improved FD with RPBC only needs to simulate the smallest unit cell of the
structure.

Simulated and analytical results for structures with different cylinder volume fractions are
compared in figure 8. The sizes of the cylinders were kept constant so that the change of
interspacing of cylinders yields the various volume fractions. A PGSE-short pulse sequence
was used in the simulations and all parameters were the same as in section 3.1, except that
Di = 1.12 μm2 ms−1, De = 1.65 μm2 ms−1, Δx = Δy = 0.5 μm, TE = 50 ms and number of points
Nx = Ny = 96 for the whole image.

Figure 8 shows again the large errors caused by the edge effect (26–32%). Taking results only
from the central unaffected computational domain (Hwang et al 2003) did remove the edge
effect for the conventional FD method. However, it is much less efficient that 88% (2D) or
96% (3D) of the computational domain (and thus the computing time) was actually wasted. In
contrast, the improved FD with RPBC gave relatively accurate results but was much more
efficient (less than 5% of the computing time of the conventional FD method in the simulations
of figure 8).

3.3. Cubic cells on a cubic grid
It has been reported that ADC in brain tissue drops significantly soon after the onset of a stroke
(Moseley et al 1990, Warach et al 1992). It has also been shown that ADC changes with intra-
cellular volume fraction (Anderson et al 2000). Hence, the relationship between ADC and
intra-cellular volume fraction is of considerable interest. Two analytical expressions for the
ADC for cubic cells on a cubic grid have been developed using two types of models: parallel
—series (PS) and series—parallel (SP) (Szafer et al 1995). For a cubic cell with size L and
permeability P on a cubic grid, the ADC expressions are
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(18)

(19)

where Dc is the effective ADC for a cell,

(20)

Simulated results for such an array using the improved FD method with RPBC are shown in
figure 9. The parameters used the measured values for red blood cells: Di = 0.63 μm2 ms−1,
De = 2 μm2 ms−1 and P = 0.024 μm ms−1 (Anderson et al 2000) and the others are the same in
the above sections.

The simulated results match the PS model quite well, better than the SP model. This might
imply that the PS model is more accurate for packed red blood cells, which is consistent with
previous experiments (Anderson et al 2000). The simulations using the conventional FD
method were not performed here because it requires thousands of times more computing time,
whereas the improved FD with RPBC method took only seconds to run.

3.4. Large-scale sample of pure water
Although the improved FD with RPBC algorithm significantly reduces the effective
dimensions of a tissue sample and, hence, increases the computing efficiency, heterogeneous
tissue samples are usually very complicated and have large dimensions, especially for a
simulation with sub-cellular resolution. High performance computing may be used to address
such a large-scale computing problem. To test the computing performance of our tightly
coupled parallel computing model, a large sample of pure water with a 101 × 101 × 101 grid
was simulated using different number of processors using a PGSE-short pulse sequence. The
parameters used were D = 2.5 μm2 ms−1, b = 1 ms μm−2, temporal interval Δt = 0.001 ms,
spatial interval Δx = 0.5 μm, TE = 100 ms and the size of computational domain along one
direction = 2a, a = 50 μm.

Figure 10 shows that the total computing time decreases as more processors are used. The total
computing time for 56 processors is only 2.5% of the time for a single processor. The advantage
of using parallel computing is obvious. Note that the total computing time reaches its minimum
when 56 processors were used in the simulation while the computing time increases when more
(64 shown in figure 10) processors are used. The reason is that when more processors are used
in the simulation, the communication and synchronization time spent among the processors
increases. When the portion of the communication time is too large, the computing time begins
to increase again and the efficiency of parallel computing decreases. This shows that, for a
certain problem, the parallel computing technique cannot decrease the total computing time
indefinitely as more processors are used. There is a minimum computing time for a specific
problem with specific computing facilities.
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To better understand the parallel computing performance of our model, a speedup chart is
plotted in figure 11. Speedup is defined as S = t1/tn, t1 is the computing time for a sequential
program (one processor) and tn is the total computing time for n processors. Our result reaches
the ideal (theoretical maximum) speedup for up to 16 processors and the performance still
increases when less than 56 processors are used, which verifies the computing performance of
the tightly coupled parallel computing model. The speedup drops down as more time is spent
on communication and synchronization, which means the parallel computing performance
decreases.

4. Discussion
For the conventional FD method, the transition matrix A remains invariant for a certain tissue
sample which significantly increases the computing efficiency. In contrast, for the improved
FD with RPBC method, A depends on the applied gradients, which are usually time dependent.
Hence, extra computing time should be used to update A in every time step if a general
diffusion-sensitizing gradient waveform is used for the RPBC method. This may decrease
computing efficiency. Fortunately, only the matrix elements which describe the diffusion
across the boundaries vary and they usually take only a small portion of the total matrix
elements. Therefore, the extra time spent on updating A in the RPBC method increases only a
small portion of the total computing time. Furthermore, the RPBC method significantly reduces
the effective dimension of the tissue sample by removing the edge effects. Hence, the improved
FD with RPBC method shows a better computing efficiency than the conventional FD method.
In practice, the explicit FTCS discretization scheme is suggested for the improved FD with
RPBC method to avoid the time-consuming calculations of matrix inversion in implicit FTCS
or Crank—Nicolson schemes.

The tightly coupled parallel computing approach significantly reduces the communication
overhead in the simulation and increases the parallel computing performance. In addition, since
all simulations in this paper were performed with a Gigabit Ethernet network, an even better
parallel computing performance may be obtained by using a Myrinet network (which has lower
latency and higher bandwidth).

Not only model structures but also histological images can be used in the approach presented
in this paper, which would enable the investigation of diffusion behaviour in large-scale
realistic tissues. This has the potential to provide a means to better understand how the changes
of tissue morphology influence ADC measurements. Another possible application of this
approach is the inverse problem, i.e. deducing the structure or parameter changes caused by
disease or injury from the changes observed in the diffusion measurements.

5. Conclusion
We have developed an improved finite difference method which not only eliminates the edge
effect induced by the conventional FD approach but also enables the efficient large-scale
simulation of diffusion in biological tissues with the implementation of a tight-coupled parallel
computing model. This method is applicable to studies of water diffusion in MRI to aid the
interpretation of diffusion-weighted imaging measures and their dependence of the
morphology of biological tissues such as tumours.
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Appendix
On the assumption that the structure is periodic with the computational domain as the unit cell,
a simple relationship can be derived between any two corresponding points in different unit
cells with any gradient waveforms. For simplicity, only the 1D case is discussed below. 2D
and 3D cases can be derived in a similar way.

Suppose xa and xb are two points related as

(A.1)

where n is any integer and α is the length of the unit cell. The water diffusion propagator of
the whole periodic structure can be defined as P(x|x’, Δ), which means the probability of a
water molecule starts from position x and migrates to x’ after a diffusion time Δ. The explicit
form of the propagator is usually unknown except for a few simple geometries (Callaghan
1995). However, the periodic structure yields

(A.2)

transverse relaxation time

(A.3)

and the spin density

(A.4)

Since any general gradient waveform can be considered as a series of short gradients (Callaghan
1997, Sukstanskii and Yablonskiy 2002), the magnetizations at xa and xb can be calculated by

(A.5)

and

(A.6)

where qn = γ gn Δt, n = 1, …, N, gn is the gradient at time tn, Δt is the time step and t = N Δt,
N is the total number of time steps. Considering the periodic structure, a substitution of xN =
x’N + nα and (A.1) can be made and (A.5) becomes
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(A.7)

After a series of substitutions xi = x’i + nα (i = N — 1, N — 2,…, 1), (A.7) becomes

(A.8)

In general, one can obtain

(A.9)

Recalling that xa = xb + nα, equation (A.9) shows that the magnetizations at two corresponding
points in different unit cells are simply related to a phase factor which depends only on the
integral of the applied gradients and the distance between these two points. Note that it is
assumed that the whole structure is periodic but the structure inside each unit cell (the
computational domain) is usually heterogeneous.
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Figure 1.
A 1D three-point finite difference stencil.
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Figure 2.
Error distributions of simulated magnetization as a function of spatial coordinates x and
diffusion times using the conventional FD method. The error is expressed as the ratio |
ADCsimulated — ADCideal|/ADCideal × 100% and the simulated parameters are the same in
section 3.1.
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Figure 3.
Diagram scheme of the 1D revised periodic boundary condition. The region between two
dashed lines is the computational domain. The whole structure is periodic so that points 0 and
N, and points 1 and N + 1 have identical structures and spin densities, respectively.
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Figure 4.
Topology of the tightly coupled parallel computing model. Cubes represent the sub-blocks
processed by different processors. The virtual topology of processors should be the same and
dotted lines represent the communications between adjacent processors.
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Figure 5.
Comparison of conventional FD and improved FD with RPBC for a 1D isotropic diffusion
sample with four types of pulse sequences: PGSE-short, PGSE-finite, OGSE-sin and OGSE-
cos (for definitions see the first paragraph of section 3.1). Note that results with the conventional
FD method are calculated from the whole computational domain and show large errors caused
by the edge effect. In contrast, all results with RPBC have errors smaller than 1%, which shows
the elimination of the edge effect. The definition of the error is the same as in figure 2.
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Figure 6.
Simulation errors change with respect to a dimensionless factor β = Q × Δx/π. The results of
the conventional FD method were taken from the central region unaffected by the edge effect.
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Figure 7.
Cross-section of a hexagonal array of cylinders: cylinders are grey and the surrounding matrix
is white. To avoid the edge effect, the conventional FD method simulates the whole image and
takes signals from the central barely affected domain for long diffusion times; whereas the
improved FD method with RPBC only needs to simulate a unit cell (in the black box).
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Figure 8.
Comparison of simulated and analytical results for the hexagonal array of cylinders. For
conventional FD, the results were taken from both whole domain and central unaffected domain
for comparison.
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Figure 9.
ADC changes with respect to the intra-cellular volume fraction for a diffusion system of cubic
cells on a cubic grid. Simulated results show good agreement with the PS model which is
consistent with the experimental data on packed red blood cells.
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Figure 10.
Total computing time changing with respect to the number of processors. Total computing time
includes the processor execution time, communication and synchronization time.
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Figure 11.
Speedup chart of the tightly coupled parallel computing model.

Xu et al. Page 24

Phys Med Biol. Author manuscript; available in PMC 2009 February 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


