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The class-specific transcription factors Knot and Cut act during 
dendrite arbor development to define the characteristic dendrite 
branching pattern of the Drosophila class IV dendritic arborisa-
tion sensory neurons. Knot mediates dendrite arbor outgrowth 
and branching via a microtubule-based program that includes 
upregulation of the microtubule severing protein Spastin. On the 
other hand, Cut promotes dendrite arbor outgrowth and branching 
through a filamentous-actin based program and additionally 
promotes filopodia formation. We discuss how differential regula-
tion of the activity of the Rac1 small GTPase by Knot and Cut may 
underlie some of the different roles these transcription factors play 
during class-specific dendrite arbor morphogenesis.

Dendrites are the chief site of signal input into a neuron, and 
the elaborate shape of dendrite arbors influences their ability to 
process these separate signals into meaningful computation.1 Given 
the essential role of the dendrite arbor for correct neuron function, 
an important question in developmental neuroscience is that of 
how the characteristic arbor shapes of different neuron classes are 
established.

A series of recent studies using the dendritic arborization (da) 
sensory neurons of the Drosophila larva has shown that neuron 
class-specific dendrite arbor shape is controlled by class-specific 
codes of transcription factors acting in post-mitotic, differentiating 
neurons.2-8 Mature dendrite arbor shape is the outcome of a succes-
sion of complex developmental processes. Hence one possibility is 
that the function of these transcription factors is to modulate basic 
dendritic developmental programs common to all neuron types in a 
class-specific manner.

There are four classes of da neurons (I–IV), each with character-
istic dendrite arbor morphology (Fig. 1).9 We recently demonstrated 
that a transcription factor code consisting of class IV-specific 
expression of the zinc finger, helix-loop-helix protein Knot and 
an ‘intermediate’ level of the homeodomian protein Cut, defines 
the characteristic dendrite arbor shape of this neuron class.5  

We found that Cut promotes outgrowth that is microtubule deficient 
and filamentous (F)-actin rich. On the other hand, Knot promotes 
extensions of the dendrite arbor entirely positive for the Drosophila 
MAP1B homologue Futsch, which co-localizes with microtu-
bules.10,11 Hence Knot mediates dendrite outgrowth positive for the 
microtubule cytoskeleton.

In addition to having dissimilar effects on the dendrite cyto-
skeleton, we have also found that Knot and Cut interact differently 
with the Rho family small GTPase Rac1, an important regulator of 
F-actin polymerization.12 When Rac1 was co-expressed with Cut, it 
enhanced the ability of Cut to promote filopodia formation.5 As a 
normal function of Cut is promoting filopodia formation, it seems 
likely that an interaction with Rac1 is part of this process (Fig. 2). 
On the other hand, when Rac1 was co-expressed with Knot, together 
they caused a large increase in dendrite branch formation. It has 
previously been shown that Rac1 is required for class IV neuron 
dendrite branching.13 Could an interaction between Knot and Rac1 
be important for the formation of some class IV branches?

A key step in branch and neurite outgrowth is microtubule inva-
sion along an F-actin core.15 Knot mediates microtubule-based 
dendrite arbor outgrowth and could function at this microtubule 
invasion step. Knot upregulates expression of the AAA (ATPases 
Associated with diverse cellular Activities) family microtubule 
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Figure 1. Transcription Factor Codes that Specify Neuron Class-Specific da 
Dendrite Arbor Shape. Tracings to illustrate the dendrite arbor morphology of 
the four classes of da neuron: class I ddaE, class II ddaB, class III ddaF and 
class IV ddaC at wandering third instar stage. Anterior is to the left, dorsal 
is up, the scale bar is 75 μm. The expression of the different class-specific 
transcription factors is shown. For Cut: - no protein expression, + low, ++ 
intermediate, +++ high. This figure is reproduced with modifications from 
Jinushi-Nakao et al. (2007).
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severing protein Spastin.5 Spastin promotes branching in both the 
axonal and dendritic compartments by providing short  microtubules 
for invasion at putative branch-points.14 During mammalian cell 
polarization and migration, Rac1 marks localized sites of the 
cortical actin cytoskeleton to which the Rac1 effector IQGAP1 is 
targeted. IQGAP1 then captures microtubules via interaction with 
CLIP-170, a protein that is localized at the plus ends of micro-
tubles.16 It is tempting to speculate that a similar process may occur 
during dendrite branching; Rac1 could mark a site where the short 
microtubules produced by Spastin can invade and promote branch 
formation (Fig. 2).

Different interactions with Rac1 could be an important part of 
mechanisms by which Knot and Cut have different roles in dendrite 
formation. To further elucidate how Knot and Cut function, it 
is now important to identify transcriptional targets of Knot and 
Cut activity, and elucidate how they modify the cytoskeleton. The 
strength of Drosophila genetics, coupled with emerging powerful 
molecular biological techniques to identify transcriptional targets, 
could greatly aid in identifying core components of dendrite develop-
ment that are modulated in a class-specific manner.
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Figure 2. Differential Modulation of Rac1 activity by Cut and Knot May lead 
to Filopodia or Branch Formation. Rac1 mediates local F-actin rearrange-
ment at the dendrite cortex. Rac1 activity may provide a local site (green 
arrows) for the action of factors controlled by either the Knot or Cut medi-
ated pathways (purple arrows). Cut controls a pathway leading to filopodia 
formation from this local site. Knot upregulates Spastin expression. Spastin 
then causes localized microtubule (MT) severing at the region where Rac1 
has promoted protrusion formation. Rac1 at the cortex mediates microtubule 
capture. Invasion of microtubules into this protrusion causes its stabilization 
and results in dendrite branch formation.


