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Cell migration is a multi-scale process that integrates signaling, 
mechanics and biochemical reaction kinetics. Various mathematical 
models accurately predict cell migration on 2D surfaces, but are 
unable to capture the complexities of 3D migration. Additionally, 
quantitative 3D cell migration models have been few and far 
between. In this review we look and characterize various math-
ematical models available in literature to predict cell migration in 
3D matrices and analyze their strengths and possible changes to 
these models that could improve their predictive capabilities.

Introduction

Cell migration is a key process involved in the immune response 
system, wound healing processes and development of tissues in an 
embryo.1 Beyond these physiological processes cell migration is an 
important aspect of cancer metastasis where cancer cells exfoliate 
from the site of primary tumor formation and migrate to other 
organs within the body through the circulatory and lymphatic 
systems.2 Cell migration is inherently a multi-scale and multi-
disciplinary process that requires a thorough understanding of both 
the biochemical aspects of cell signaling and chemotaxis and the 
biophysical and mechanical aspects of cell-matrix interactions.3

Cell migration studies have focused primarily on migration in  
2D environments, including a number of modeling endeavors4-17 
over the past 20 years. Though these 2D analyses give us a fair insight 
on the mechanics of cell-substrate and cell-cell interactions, yet they 
still fall short of explaining the comprehensive in-vivo processes due 
to lack of the third dimension. A key deficiency is the lack of quanti-
tative treatment of key components cell-matrix interactions (such as 
proteolysis) within a 2D framework.18,19

Part of the problem resulting in fewer models of 3D motility is 
lack of high quality data of cell movement in 3D. However, this 
problem is increasingly become less of an issue with recent success 
in high resolution imaging in native and synthetic 3D matrices.3,20 
Apart from experimental assays that quantify cell motility in 3D 
matrices we also need to develop quantitative mathematical models 

to fully comprehend the role of matrix mechanics, matrix struc-
ture and cellular parameters (e.g., mechanical properties, receptor 
density and signaling) in regulating migration in 3D environments. 
These mathematical models, rooted in fundamentals of cell biology, 
mechanics and kinetics will have the power to determine the rate 
limiting parameters that regulate cell motility in 3D. Additionally, 
mathematical models also need to act in a co-operative manner with 
experiments. While experiments can supply the data required to 
build these models, the results of these models can help design better 
experiments that can give more meaningful results.

The Biology of 3D Cell Migration

The ECM interacts with the cell mainly through specific cell 
surface receptors.21,22 These receptors are responsible for the growth 
and differentiation of cell and also mediate cell attachment, polariza-
tion and migration. The integrins are the major cell surface receptors 
involved in cell-ECM interactions.23-25 When cells migrate through 
3D matrices they experience resistance through biophysical interac-
tions with the visco-elastic matrix. This resistance is a unique feature 
of motility in 3D, as in the case of 2D motility, resistance is limited 
to interfacial 2D friction. In order to overcome this resistance the 
cells follow a sequence of adhesion and detachment events facili-
tated by the cell surface receptors.18,20 Matrix degradation by serine 
and metalloproteinases also helps in reducing the resistance to cell 
motility. Recent studies have also suggested alternate mechanisms 
resulting in an amoeboid motility in the absence of MMPs within 
certain matrices.18-20 The cross-talk mechanisms between MMP and 
integrin receptors during 3D migration, however, remain elusive. 
Similarly, the organization of integrins on cell surface to form focal 
adhesions in 3D is also a subject of debate and a definitive picture 
is yet to emerge.26,27 These unanswered questions of fundamental 
importance make 3D cell migration all the more interesting and 
challenging from a modeling perspective.

Typical migration process is characterized in a three step cycle 
including extension of lamellipod and attachment to substratum 
through cell surface receptors followed by constriction of cell 
cytoskeleton and subsequent detachment of cells to the substratum 
at the rear end.1 While these processes in 3D may seem similar to 
processes in 2D migration, there are numerous differences.3,28 The 
cells typically do not polarize in the same manner in 3D migration 
as they do in 2D migration. Additionally, the rate limiting step may 
vary under different circumstances. While sometimes lamellipod 
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extension and cell substratum attachment can govern cell migra-
tion speed, at other instances it’s regulated by rear end detachment. 
Usually there is an asymmetry in the number of cell surface receptors 
in the front and the rear of the cell.28 This leads to an asymmetry in 
the attachment and subsequent detachment between the front end 
and rear end. This establishes a force gradient between the two ends, 
hence leading to a subsequent motion. Cell constriction is thought 
to be provided by the insertion of myosin into actin filaments18 
leading to cell displacement. Subsequently detachment occurs due 
to either exfoliation of surface receptors or internalization of these 
receptors. For the amoeboid motility in 3D, while the role of MMPs 
and integrins has been studied in some detail,18-20,29 the quantitative 
picture connecting the matrix with the cellular mechanics is yet to 
emerge. Hence there is an even greater need for mathematical and  
computational modeling of migration in 3D.

Existing Mathematical Models in 3D

While the number of mathematical models describing motility 
in 3D has increased, the number is still orders of magnitude lower 
than their 2D counterparts. While some of these models predict 
individual cell motility in a 3D environment that mimics the in vivo 
extra-cellular matrix, others predict population behavior. The level 
of detail and length-scales also varies significantly. Some of these 
migration models look at the effect of cell proliferation and death 
and at the same time there are some simplistic models that ignore 
these effects. In the following section, we provide a brief overview of 
the key parameters of the 3D models reported in literature as well as 
suggestions for future development and refinement of these models.

Force Based Dynamics Models

These models use internally generated traction forces and intro-
duce parameters like matrix density and stiffness and cell-matrix 
adhesivity in generating cell motility tracks. Zaman et al.28 have 
discussed this kind of model in detail. The dynamics of this model is 
accounted for by the traction forces at both the front and rear end of 
the cell and forces due to cell protrusion into the matrix and viscous 
drag due to cell motility in the visco-elastic Extra Cellular Matrix 
(ECM). The traction forces at front and rear ends are different and 
are dependent on the force per ligand-receptor complex and receptor 
adhesivity. The force-per ligand receptor is a function of the Young’s 
modulus of the ECM. Adhesivity is a dimensionless parameter that 
varies with the number of receptors on each end of the cell, their 
binding constant and the concentration of ligand at each end. In 
order to simplify the model the authors assumed that the binding 
constants of the receptors at both ends were the same and that the 
concentration of ligand in the matrix was uniform.

The model then defines a drag force that arises due to the resis-
tance to motility of cells in the viscous environment and a protrusion 
force that is present due to cell movement in the ECM. The drag 
force is proportional to the velocity of cell and is dependent on the 
cell shape and viscosity of the ECM. The protruding force has a 
magnitude that has been determined experimentally. But the direc-
tion of protrusion is randomly chosen after every timestep. The 
model assumes the only stable protrusions are responsible for cell 
migration and any retractions small protrusions are ignored. The cell 
velocity is calculated under the constraint that the net force acting 
on the cell is zero. Simulations of this model were carried out with a 

timestep of 600 seconds. Owing to this large timestep, cell dynamics 
at the edges are excluded. These include actin waves and lamellipo-
dial contractions.

At low and high adhesivity values the model predicts low cell 
velocity while cell velocity increases at intermediate adhesivity values. 
Also the asymmetry in receptor concentrations between the front 
and rear ends increases cell velocity. Similarly cell velocity is highest 
at intermediate values of cell detachment force. Experimental results 
are consistent with these findings.3 At low adhesivity values there 
is not sufficient traction hence cell velocity is low while at high 
values there is a steric hindrance from the matrix which reduces 
cell velocity. Also the model predicts a similar biphasic relationship 
between cell velocity and ligand concentration and matrix stiffness 
which is consistent qualitatively. The results of the model agree with 
the experimentally determined 2D cell motility assays. But since the 
model takes into account matrix stiffness and matrix viscosity it’s a 
better indicator of the actual cell velocity in-vivo.

The drawback of this model is that it only predicts the movement 
of a single cell in the matrix, while in-vivo cell migration almost 
always includes a population of cells. In vivo these cells aggregate and 
sometimes dissociate and form clumps, this is especially true in the 
case of cancer metastasis. The model also does not account for the 
change in shape of cells as they protrude into the matrix. The change 
in shape of cells can affect the drag force and hence the cell velocity. 
In this model the matrix properties remain constant through the 
course of the simulation, while in real world conditions the matrix 
properties might not necessarily remain constant. Degradation by 
proteases can change the matrix stiffness and its visco-elastic nature 
which is not taken into account by the model. In spite of these  
drawbacks the results from this model can help design better experi-
ments that take into account matrix properties and help find key 
parameters responsible for cell motility in vivo.

Stochastic Model of Persistent Random Walks

These models are extensions of the 2D migration models of 
Tranquillo5,7 and Stokes.30,31 The path taken by each cell is deter-
mined by solving the Langevin equation numerically. The model 
selects a cubic volume element and cells are distributed uniformly 
within this volume. A random velocity vector is assigned to each cell 
where each component of the velocity is selected randomly from a 
Gaussian distribution. This Gaussian distribution is directly propor-
tional to the size of the timestep. Parkhurst et al.32 used this kind of 
model to predict neutrophil motility in a 3D environment. Parkhurst 
et al. in their studies performed their simulations on this model using 
a timestep of 0.1 seconds.

After each timestep the velocity and the location of each cell is 
updated. The model defines the root mean square displacement of 
the cell as a function of root mean square speed and persistence. 
Random motility coefficient (μ) and persistence values are available 
in literature and can be used in this model. After simulation over 
a period of time the path taken by each cell in three dimensions is 
generated. By comparing their computer simulations to experimental 
results Parkhurst et al. determined that the 3D paths generated by 
the simulation were similar to path taken by particles in a Brownian 
motion. By fitting the mean square displacement values for different 
population of cells to calculate μ and persistence they determined 
that at low cell population (around 10 cells) the variation in μ and 
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persistence was high while at higher population (greater than 50 
cells) the estimates of μ and persistence approached experimental 
values. Hence they conclude that even a cell population of around 
100 cells is enough to predict population behavior.

The strength of this model lies in the fact that population 
behavior can be predicted. Even though it’s individual cell paths 
that are predicted population effects are still visible. The downside 
to this model is that dynamic effects like traction and drag are not 
incorporated into the model. Also the effect of matrix stiffness and 
porosity are not apparent in the model. Even though the population 
as a whole is looked at in this model, it still doesn’t account for the 
fact that aggregation of cells is a possibility. But this model is quite 
useful for validating the experimental results of a small population of 
cells in a 3D environment.

Multi-Cell Spheroid Migration

Some mathematical models look at the movement of cancer 
cell spheroids. Cell proliferation and death are a major parameter 
involved in cell motility in these models. Differential rates of cell 
proliferation and cell death lead to pressure gradients that induce 
cell locomotion. McElwain et al.33-36 used this kind of a model to 
show that pressure differences created by cell proliferation and death 
are responsible for cell locomotion and that this motion is governed 
by a Darcy’s law kind of equation. They proposed that the rate of 
consumption of nutrients decreased with the concentration of nutri-
ents within a critical range, with a constant rate of consumption 
when the concentration of nutrients is greater than a threshold and 
rate of consumption drops to zero when the concentration of nutri-
ents drops below a lower threshold value.

In this model the rate of cell proliferation is assumed to be 
proportional to the rate of nutrient consumption and hence both 
rates follow the same distribution. Conversely rate of cell death 
increases with decreased concentration of nutrient concentration. 
These rates of proliferation and death are modeled as volume gain 
and loss respectively. The volume loss and volume gain functions are 
modified to make the distribution continous. The model then applies 
a mass balance study of the cells within the multi-cell spheroid with 
parameters including diffusion coefficient, concentration of nutrient, 
velocity of cellular fluid (which is considered incompressible) and 
a chemotactic factor. In this model the diffusion coefficient and 
chemotactic factor are assumed to be constant.

Without calculating the actual pressure gradient the model calcu-
lates the gradient due change in volume (either gain or loss). The 
nutrient concentration gradient of the multi-cell spheroid is calcu-
lated with parameters including the radius of the spheroid, radius of 
region where nutrient is depleted (cell proliferation is limited) and 
the radius of the necrotic region (where cell death is maximum). The 
local particle velocity is related to the conservation of mass as particle 
velocity is proportional to pressure gradient. The model thus develops 
distributions for both spheroid velocity and nutrient concentration. 
This is used to calculate the movements due to random walk, move-
ment due to a pressure gradient and motion due to chemotactic 
activity. Dimensionless parameters that are a combination of these 
movements are measured.

McElwain et al. show that when the multi-cell spheroid (MCS) 
is still expanding there is a net velocity outwards at the edge and 
when it’s dormant there is a net velocity inwards at the inner edge 

and zero at the outer edge i.e., there is no expansion of the MCS. 
By varying the values of the chemotactic parameter it was concluded 
that at higher values of the chemotactic parameter active migration 
is observed while at lower values a more dormant migration resulting 
from the passive pressure gradient is observed.

This model combines the motion due to random walk, pres-
sure gradients and chemotactic activity of cell aggregates, making 
it a good model to study tumours. But it fails to take into 
account important parameters like matrix density, porosity and 
stiffness which are important factors in in-vivo migration. While 
nutrient concentration is part of the parameters, inclusion of ECM  
parameters can help model real world conditions better.

Monte Carlo Modeling Studies

Recent studies have also used monte carlo type models, particularly 
using rectangular or square lattices in 3D environments.37,38 This 
kind of approach allows for faster simulations, population effects as 
well as prediction of speed and persistence in 3D in a heterogeneous 
environment. A key advantage of this type of modeling initiative is 
the use of rather simple set of rules governing the process of motility 
and prediction of results for long time behavior. These simula-
tions37,38 have shown good agreement with experimental studies. 
Similarly, lattice monte carlo approaches allow for mapping of migra-
tion in diverse and complex environments where the steric effects can 
change abruptly. Thus these types of models render themselves fairly 
well to model tumor invasion in vivo.

A key handicap of these models is the qualitative nature of the 
results. Kinetic effects at the cell matrix interface, mechanical effects 
of the matrix and cell polarity can only be studied qualitatively. 
Additionally, sensitivity on initial conditions and the rules governing 
movement from one lattice site to another can also affect the overall 
speed and persistence results. Nonetheless, these models provide are 
capable of handling issues at the multi-scale level that are beyond the 
reach of other modeling initiatives.

Summary

As evident from the overview of existing 3D models, there is a 
critical need for developing high resolution quantitative models of cell 
migration in 3D. A number of efforts in this area have shown highly 
promising results, yet a lot more needs to be done. Key among these 
are issues of quantitative comparisons with experiments and addressing 
the multi-scale nature of the problem. The current level of detail in 3D 
models lacks the incorporation of molecular events that define these 
processes and are sometimes responsible for most dramatic changes. 
The interface between mechanics and intra-cellular and inter-cellular 
signaling also needs to be addressed. Perhaps most significantly, a 
strong collaboration between experimentalists and modeling groups 
is the bottleneck for the development of the next generation of 3D 
migration models. Integration of more quantitative experimental data 
will undoubtedly create new platforms for rich, detailed and multi-
scale models that have the mathematical foundations and are capable of 
predicting complex phenomenon in 3D. Mathematical models are only 
useful when they are predictive and quantitative, rather than qualitative 
and simply “postdictive.” Such a level of mathematical modeling in 3D 
motility is yet to arrive, yet right steps in that direction have been taken 
and an integration of efforts from theoreticians and experimentalists 
will ensure that level of sophistication in the very near future.
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