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The pushing structures of cells include laminar sheets, termed 
lamellipodia, made up of a meshwork of actin filaments that grow 
at the front and depolymerise at the rear, in a treadmilling mode. 
We here develop a mathematical model to describe the turnover 
and the mechanical properties of this network.

Our basic modeling assumptions are that the lamellipodium 
is idealised as a two-dimensional structure, and that the actin 
network consists of two families of possibly bent, but locally 
parallel filaments. Instead of dealing with individual polymers, the 
filaments are assumed to be continuously distributed.

The model includes (de)polymerization, of the mechanical 
effects of cross-linking, cell-substrate adhesion, as well as of the 
leading edge of the membrane. 

In the first version presented here, the total amount of F-actin 
is prescribed by assuming a constant polymerisation speed at the 
leading edge and a fixed total number and length distribution of 
filaments. We assume that cross-links at filament crossing points 
as well as integrin linkages with the matrix break and reform in 
response to incremental changes in network organization. In this 
first treatment, the model successfully simulates the persistence of 
the treadmilling network in radially spread cells.

Introduction

Cells migrate by protruding at the front and retracting at the 
rear. Protrusion occurs in thin membrane bound cytoplasmic sheets, 
0.2–0.3 μm thick and up to several microns long, termed lamel-
lipodia.1 The major structural components of lamellipodia are actin 
filaments, which are organised in a more or less two-dimensional 
diagonal array with the fast growing, plus ends of the actin filaments 
directed forwards, abutting the membrane.2 Protrusion is effected by 
actin polymerisation, whereby actin monomers are inserted at the 
plus ends of the filaments at the membrane interface and removed 
at the minus ends, throughout and at the base of the lamellipodium, 
in a treadmilling regime.3 Stabilisation of the actin meshwork is 
achieved by the cross-linking of the filaments by actin-associated 
proteins, such as filamin4 as well as protein complexes, such as the 

Arp2/3 complex,5 although the density and location of such cross-
links remains to be established. Since actin polymerisation is involved 
in diverse motile processes aside from cell motility, including endo-
cytosis and the propulsion of pathogens that invade cytoplasm,6 the 
question of how actin filaments are able to push against a membrane 
has spawned the development of various models.7

Comprehensive modeling efforts were initiated in 1996 and fall 
into two groups. The first group includes continuum models for 
the mechanical behaviour of cytoplasm: a two phase formulation 
for cytosol and the actin network;8 a one dimensional viscoelastic 
model;9 a one dimensional model for the actin distribution;10 and 
a two dimensional elastic continuum model.11 The second group 
makes presumptions about the microscopic organization of the 
actin network. The Brownian ratchet model for the polymerisa-
tion process introduced by Mogilner and Oster12 considers actin 
cross-linking proteins as stabilisers of the lamellipodium meshwork, 
allowing enough flexibility for actin filaments to bend away from 
the membrane to accept actin monomers. Other models are based 
on the current idea,5 that the actin filaments in lamellipodia form a 
branched network with the Arp2/3 complex at the branch points.13-15 
A related model considers the lamellipodia as constructed from short 
filaments that take one of six orientations.16

Recent studies have indicated that filaments in lamellipodia are not 
organised in branched arrays.17 Rather, the pseudo-two-dimensional 
actin network contains unbranched filaments whereby the filament 
density decreases from the front to the rear of the lamellipodium, 
indicative of a graded distribution of filament lengths. According to 
this structural information, we present a quasi-stationary modeling 
approach for the simulation of the turnover of the lamellipodium 
in a circularly symmetric cell, corresponding to real situations such 
as cytoplasmic fragments of keratocytes.18 Our approach differs 
from previous ones in that we describe the lamellipodium in terms 
of a continuous distribution of filaments of graded length and their 
linkages. In this first analysis we consider four primary parameters: 
bending elasticity of actin filaments, cross-links between the filaments; 
the resistance against polymerisation by the membrane; and interac-
tions between the filaments and the substrate via trans-membrane 
linkages. With a selected set of parameters we compute the dynamics 
of the network organization. The simulations reproduce several 
features also found experimentally: treadmilling, the lateral flow of 
filament plus ends along the front edge,17 and persistence of the 
network organization after achievement of a steady state.
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Results

Modeling. The formulation of the model is based on the following 
considerations (more details can be found in the appendix).

A1: At each point in the lamellipodium, actin filaments have one 
of two directions in the diagonal network, represented by oriented, 
slightly curved segments with the barbed ends attached to the leading 
(outer) edge of the lamellipodium. Filaments are inextensible.

A2: The lamellipodium is two dimensional and rotationally 
symmetric, i.e., at any point in time it has the shape of a circular 
ring.

This compares with the situation of a radially spread cytoplast 
from a keratocyte.

A3: Filaments polymerise at the barbed ends with constant 
polymerisation speed. Depolymerisation at the pointed ends is a 
stochastic process with prescribed distribution.

As a consequence of A1 and A2 the lamellipodium has the orga-
nization depicted in Figure 1.

There are two families of locally parallel filaments. Looking from 
the centre of the lamellipodium ring, the filaments in the first group 
bear to the left and the second group to the right; referred to as 
clockwise and anti-clockwise filaments. As a consequence of rota-
tional symmetry, all filaments can be constructed from one reference 
filament (which, “without loss of generality,” we shall take clockwise) 
with the maximal filament length. All clockwise filaments can then 
be constructed by rotation of the reference filament and subsequent 
random cutting at the pointed end; correspondingly, all anti-clock-
wise filaments are created by reflection, rotation and cutting.

A central feature of the model is the description of production 
and decay of cross-links and integrins, consistent with dynamic 
association/dissociation of linkage molecules with the actin network, 
leading to the next assumption.

A4: A cross-link is an elastic connection between a clockwise and 
an anti-clockwise filament. The cross-link has both an elastic and a 
torsional component (Fig. 2 and Appendix). Cross-links form and 
break stochastically at the crossing between two filaments with at 
most one cross-link for any pair of filament crossing points at any 
time.

With stable cross-links unrealistic deformations of the filament 
meshwork occur.

A5: An adhesion is an elastic link between a filament and a point 
on the substrate via a transmembrane linkage. Adhesions can form 
or break spontaneously, breaking being dependent on the degree of 
link extension.

A6: The cell membrane simulates an elastic rubber band stretched 
around the barbed ends of the filaments.

This assumption only serves to mimic a situation in which forces 
exerted on the barbed ends of filaments by the membrane are coun-
teracted by the protrusive forces generated by polymerisation. To a 
first approximation the radius of the lamellipodium is determined 
by a balance of these forces. (A more thorough modeling of the size-
determining mechanisms will be presented in a future study. One 
problem with this assumption is that membrane resistance increases 
with radius, which is probably not the case).

A7: The position of the filaments in time is determined by a 
quasistationary balance of elastic forces resulting from bending of 

the filaments, stretching and twisting the cross-links, stretching the 
adhesion linkages, and stretching the cell membrane.

The quasistationary assumption means that we neglect elastic 
oscillations, assuming that the filament network is damped by 
viscous forces in the cytosol and that the system therefore always 
operates at minimal potential energy. Thus, the evolution of the 
network is a consequence of actin polymerization dynamics together 
with the creation and breaking of cross-links and adhesions.

In summary, the model we present has two major ingredients (see 
Appendix for details): (1) the making and breaking of cross-links 
in the filament network and between the filaments and the matrix, 
based on renewal equations; and (2) minimisation of the potential 
energy of the system.

Simulation results. We model a simple symmetrical cell with a 
hypothetical radius of slightly more then 8 μm, but with a realistic 
density of actin filaments and graded filament lengths.17 Realistic 
values for several of our model parameters can be found in the 

Figure 1. Constituent elements of the model.

Figure 2. Detailed view at cross-links.

118 Cell Adhesion & Migration 2008; Vol. 2 Issue 2



Modeling of the actin-cytoskeleton in symmetric lamellipodial fragments

www.landesbioscience.com Cell Adhesion & Migration 119

literature. Examples are the stiffness of filaments,19 the equilibrium 
angle between filaments and their total number17 and reaction rates 
of cross-links and integrins.20,21 For the latter, however, it turns out 
that our linear elasticity assumptions are a strong simplification from 
a microscopic point of view. Therefore approximate averaged values 
of elasticity parameters have been used.

For other quantities no reliable information seems to be available 
(in particular for in-vivo situations). For those we fixed values of a 
reasonable size such that a balance was reached between the forces of 
pushing at the periphery and the adhesion forces with the substrate. 
At the same time, both force components had to be low enough to 
prevent buckling of the actin filaments. Most notably the elasticity of 
the membrane, the on-rate of integrins βadh, and also the maximal 
density of integrins  are determined with a view to get reason-
able simulation results.

A typical long time (quasi-)equilibrium is shown in Figure 3.  
The left subfigure represents the lamellipodium where the position of 
the standard filament is drawn in black. Other filaments were created 

by rotating and/or reflecting the standard filament and introducing 
graded lengths to give a linear decrease in filament density from the 
tip to the base of the lamellipodium.17

The upper right picture represents the density of cross-links ρ 
depending on the position along the standard filament, where the 
value 0 represents the pointed end, and on the age. The lower right 
picture represents the density of integrins, ρadh, in an analogous way.

With respect to age both densities decay rapidly, but for different 
reasons: Cross-links break rapidly since their decay rate is rather high, 
cp. Table 2. On the other hand integrins are much more stable, but 
since the cell is in a non-moving state, they get stretched rapidly and, 
consequently, they are much more likely to break. This is modelled 
by a Boltzmann-factor according to Li, Moy.21

The solution tends to (quasi-)equilibrium very quickly, within the 
time necessary for two phases of treadmilling of the filaments.

In the long term the solution is stationary in the sense that the 
shape of the filaments and the density of cross-links do not change. 
However, there is a dynamic rotation of the clockwise filaments in 

Figure 3. Long time solution.
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clockwise direction and of the anti-clockwise 
filaments in anti-clockwise direction, corre-
sponding to a bilateral flow of filament plus 
ends along the cell periphery. This lateral fila-
ment flow mimics that deduced for filaments 
in living cells, based on filament geometry 
and the observed lateral translation of filament 
bundles.17 Another feature found in lamel-
lipodia already present in this simulation is 
a characteristic angle between filaments and 
between filaments and the membrane. Because 
of the presence of a preferred cross-link angle, 
this result is not very surprising (compare to 
Schaus et al.,15 where a preferred branching 
angle is used, too).

However, torsional stiffness of cross-links 
κT was not necessary to achieve short-term 
stability (12 min), but became relevant in the 
longer term (100 min).

This, however, requires a balance between 
the forces mediated by adhesion with the 
substrate, the tangential forces exerted by  
cross-links and the radial ones exerted by the 
membrane (see simulation result Fig. 5) 
where we did the computation with 

.

If we set the maximal density of integrins 
 to a higher value,  the meshwork collapses 

to a dense ring close to the membrane like in 
Figure 6, where we computed with 

. On the other hand, when 
we set the maximal integrin density to the 
smaller value , the mesh-
work disintegrates, since the filaments adopt a 
radial direction as in Figure 7.

Finally, as observed by other authors,22 we compute forces per 
filament barbed end in the pN range.

Conclusion. We have here attempted to model the organiza-
tion of a continuously treadmilling lamellipodium. In contrast to 
other recent models (reviewed by Mogilner12), we assume that the 
actin filaments are continuously distributed, of variable length and 
stabilised in a network by cross-linking proteins. Recent studies by 
electron microscopy17 have not supported the idea that actin fila-
ments in lamellipodia form a branched, dendritic array;5 therefore 
branches were not considered. In reality the lamellipodium is not 
truly 2 dimensional, but in the order of 0.2 μm thick. In the context 
of the present model, assumptions about cross-links between fila-
ments are unaffected. However, transmembrane linkages to the 
substrate will only be possible for filaments closely apposed to the 
membrane. To assess the potential frequency of such linkages as 
well as the frequency of cross-links between filaments, new infor-
mation about the three-dimensional arrangement of filaments in 
lamellipodia, by electron microscope tomography will be required. 
There are limitations to the present status of the model. Our current 
model does not consider how the actin network is generated in the  
first place, nor does it explain how filaments rearrange during 
different

 
phases of protrusive activity.17 Also the effect of myosin is 

not incorporated yet, whose contractive effect might largely replace 
the strong mechanical effect of the cell membrane in the present 
model.

Nevertheless, it is interesting to note that filament reorientations 
can be induced by changing the substrate linkage constant. Further 
work will be required to integrate other parameters into the present 
scheme in order to develop a more comprehensive model of network 
dynamics.

Appendix

Mathematical formulation of the model. In order to obtain a 
feasible mathematical description we will adopt a homogenisation 
limit, based on the assumption that the density of filaments within 
the lamellipodium is very high; we let the number of filaments tend 
to infinity in order to obtain a model based on continuous quantities 
instead of discrete ones.

With the maximal filament length L, an arc length parameterisation 
of the reference filament at time t is given by , 
where s = 0 corresponds to the pointed and s = L to the barbed end. 
Occasionally we shall need the representation z(t,s) = |z(t,s)| (cos 
ϕ(t,s), sin ϕ(t,s)) in polar coordinates with the angle . We 
expect |z(t,s)| to be strictly increasing with respect to s. Then |z(t,0)| 

Table 1  List of parameters describing the actin‑filament meshwork

Table 2 List of parameter rate constants
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is the inner radius of the lamellipodium and |z(t,L)| the radius of its 
leading edge at time t. As mentioned above, the reference filament is 
assumed to be clockwise, i.e., ϕ(t,s) is a strictly decreasing function of 
s. Note that |∂sz(t,s)| = 1.

For the parameterisation of the other filaments we need matrices 
of rotation and of reflection-rotation:

Assuming an equal number n of clockwise and anti-clockwise fila-
ments, their parameterisations are given by
where the pointed end parameters are (according to the rotational 
symmetry assumption) distributed identically such that

where the given distribution function η satisfies η(t,0) = 0,  

η(t,L) = 1. It is not necessary for our purposes to describe the 

stochastic depolymerisation process in detail, since for large numbers 
of filaments only the distribution will be needed.

The arclength s is a geometric parameter. Because of the polymeri-
sation at the barbed ends, polymerised actin molecules travel along 
the filament towards the pointed ends with the polymerisation speed 
denoted by v0. Because of this and because of the inextensibility 
assumption in A1, a Lagrange variable along the filaments is given 
by σ = s + v0t. In other words, the path of the actin molecule with 
label σ on the reference filament is given by z(t,σ - v0t). The fact that 
the filaments are depolymerised at the pointed ends is reflected by 
the assumption that  and  are increasing func-

tions of time. As a consequence, η(t,σ - v0t) is decreasing in t.
For the description of the kinematics of cross-links according 

to assumption A4 it will be sufficient to describe the cross-links 
between the reference filament and all anti-clockwise filaments. For 
this purpose we first have to find the crossings, which are unique due 
to A4. We compute

Figure 4. Initial condition zI.

(1)
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Then, if at time t there is a crossing point between the reference 
filament and the j th anti-clockwise filament, it is given by 

 where sj (t) is defined by ϕ(t,sj (t)) = 
-πj/n or ϕ(t,sj (t)) = π - πj/n.

If a cross-link between the reference filament and the j th anti-
clockwise filament is created at time t*, then this happens at the 
crossing point. Once established, however, the two binding sites will 
move along the two filaments due to the treadmilling effect. Thus, at 
a later time t = t* + a, the binding sites will be located at z(t,sj (t - a) 
- v0a) and  until the cross-link eventually 
breaks. We call a the age of the cross-link. Below we shall assume a 
resistance of cross-links against stretching and twisting. This means 
there are elastic forces related to the stretching

and to the twisting

where α is an equilibrium angle determined by the cross-link  
geometry.

The probability distribution of the cross-link with respect to age 
will be denoted by rj(t,a), where

       (2)

is the probability that a cross-link between the reference filament 
and the j th anti-clockwise filament exists at time t. We postulate the 
following model for the evolution of the distribution:

This model has the standard form of age-structured population 
models (see, e.g., Perthame23). The differential equation describes 
ageing and breaking of cross-links, the boundary condition at a = 0 
describes their creation. The dependence of the breaking rate on the 
physical distance between the binding sites (stretching) and the devia-
tion from the equilibrium angle of cross-links (twisting) reflects that a 
cross-link might be broken by being loaded too much. The twisting 
dependence of the creation rate β could eliminate the possibility for a 
cross-link to be established, if the angle between the filaments differs 

Figure 5. Solution without torsional stiffness.

(3)
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from the equilibrium too much. Integration of the differential equation 
with respect to a shows that the second factor in the creation rate guar-
antees (2), i.e., the fact that there is at most one cross-link. Just as for the 
pointed-end (de)polymerisation process, all we need to know about the 
processes of creation and breaking of cross-links is the distribution rj.

The domain of the differential equation in (3) is determined by 
the requirement that both binding sites (on the reference filament 
and on the j th anti-clockwise filament) have not been depolymerised 
yet: sj (t - a) - v0a ≥ max

The next modeling step is the passage to a continuum description 
by letting the total number 2n of filaments tend to infinity. In the 
limit, the discrete rotation angles βj = 2πj/n, j = 0,…,n-1, are replaced 
by a continuous angle  Then we interpret the discrete fila-
ment positions  and  as approximations for the values 
F c(t,s,βi) and, respectively, F a(t,s,βj) of continuous distributions

F c(t,s,β) = R(β)z(t,s), F a(t,s,β) = D(-β)z(t,s).

The distribution η(t,s) now gets a deterministic interpretation as 
the expected fraction of filaments in each angle element dβ, whose 
pointed end parameter at time t is smaller than s.

Similarly, the probability distribution rj(t,a) will be interpreted 
as an approximation of the expected cross-link density r(t,a,β) 
per filament at β = βj. In the following, however, cross-links will 
be described in terms of their arc length parameter and their age.  
A cross-link at arc length s and with age a at time t on the reference 
filament has been created at arc length s + v0a at time t - a, and it 
connects the reference filament to the anti-clockwise filament with 
parameter β = γ(t,s,a) := -2ϕ(t - a, s + v0a).

By the strict monotonicity of ϕ with respect to s, this relation 
can be used to replace the variable β by s. By dβ = ∂sγ ds, the cross-
link density per filament in terms of s and a is given by ρ(t,s,a) = 
r(t,a,γ(t,s,a))∂sγ(t,s,a)).

The factor ∂sγ can be interpreted as density of crossing anti-
clockwise filaments per unit length along the reference filament. 
From (3) and using ∂tγ + ∂aγ - v0∂sγ = 0, the transport equation for 
the cross-link density per angle-element becomes

Figure 6. Collapse to a dense ring without torsional stiffness when adhesion is to strong.
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       (4)

with the boundary condition

where γ-1 is the inverse function of γ with respect to the argument 
s, i.e.,  and the stretching and 
twisting terms are now given by

       (6)

Note that the integration in the boundary condition has now 
been limited to the upper bound (L - s)/v0 for the age of a cross-
link at position s. The rather complicated boundary condition can 
be simplified by the assumption that typical life times of cross-links 
will be small compared to other characteristic times for the network 
dynamics. We then approximate γ-1(t,a,γ(t,s,0)) by γ-1(t,0,γ(t,s,0)) = s,

 

and ∂sγ(t,γ-1(t,a,γ(t,s,0)),a) by ∂sγ(t,s,0):       

(7)

The boundedness property (2) of the microscopic cross-link 
density determined by (3) carries over to the modified model (4), (7). 
The accumulated distribution

satisfies the equation

preserving the property 
Taking into account the length distribution of the filaments, we 

arrive at the effective cross-link density
ρeff(t,s,a) = ρ(t,s,a)η(t,s)2,

where each of the two filaments involved in a cross-link contributes 
a factor η. Note that ρeff satisfies

Figure 7. Dissolving lamellipodium without torsional stiffness when adhesion is to weak.

(5)
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hence the same type of transport equation as ρ but with a modi-
fied decay rate, which takes into account the loss of cross-links due 
to depolymerisation of the pointed ends. Recall that ∂tη - v0∂sη is 
negative.

Concerning the dynamics of adhesion molecules (modeling 
assumptions A5), not only the assumptions are similar to the cross-
links but also the model. The density ρadh(t,s,a) of adhesions per 
filament satisfies the differential equation

       (8)

with the boundary condition

       (9)

where the breaking rate ζadh depends on the stretching of the adhe-
sions:

Sadh(t,s,a) = |z(t,s) - z(t - a,s + v0a)|.
The position of the filaments (supposition A7) finally will be 

formulated by assuming that the filament positions minimise a 
potential energy functional containing contributions from the above 
mentioned elastic effects:

U(t)[w] := Ubending (t)[w] + Usc1 (t)[w] + Utc1 (t)[w] + Uadh (t)[w] 
+ Umembrane [w].

Here  is a place holder for the reference fila-
ment position at time t.

The energy contribution from bending the filaments is taken in 
the standard form of linearised beam theory:

where κB can be interpreted as the product of the bending stiffness of 
one filament and the total number 2n of filaments. Note that 2nη(t,s) 
is the total number of filaments whose length is at least L - s.

Stretching the cross-links contributes the following energy term:

and similarly for twisting the cross-links:

The constants κS and κT are the products of 2n with Hooke 
constants describing the stretching and, respectively, torsional stiff-
nesses of the cross-link molecules.

The potential energy of the stretched adhesions is given by

Note that the evaluation of the adhesion energy at time t requires 
information on previous filament positions at all times between t - L/
v0 and t. Actually, the same is true for the cross-link energies through 
the function γ(t,s,a) = -2ϕ(t - a,s + v0a).

The action of the cell membrane on the leading edge of the 
network (A6) leads to a model of the form

This models resistance against stretching the membrane above the 
equilibrium radius R0. We remark that κM/(4π2) is the force resulting 
from stretching the membrane by unit length. The force acting on 
any single barbed end is therefore given by the total force exerted by 
the membrane divided by the total number of barbed ends,

The position of the reference filament at time t is now determined 
by minimising the energy under the side condition that s is the arc 
length:

         (10)

This concludes the derivation of the model. However, the formu-
lation of a well posed problem still requires a start-up procedure. 
The problems (4), (7) and (8), (9) for the cross-link density and, 
respectively, for the adhesion density have to be supplemented by 
initial conditions

ρ(0,s,a) = ρI(s,a), ρadh(0,s,a) = ρadh
I(s,a), 0 ≤ s ≤ L, 

 0 ≤ a ≤ (L - s)/v0.
Since, as mentioned above, the problem (10) for the determi-

nation of the filament positions is a delay problem, we need to 
prescribe

z(t,s) = zI(t,s), -L/v0 ≤ t ≤ 0, 0 ≤ s ≤ L.
The knowledge of the history of the filament positions is neces-

sary for specifying the binding sites of the cross-links and adhesions 
which are present initially. If, for example, initially only cross-links 
and binding sites with a maximal age  are present, i.e., 

, then it is also sufficient to
 

prescribe 

Numerical method. We found that in order to perform simula-
tions based on the model above, it was convenient to parameterise 
the set of admissible functions by making the ansatz

Hence for fixed t ≥ 0 the position of the reference filament is 
being described by the radius R(t) > 0 and the argument ω(t) ∈ R of 
the barbed end and by the tangential directions, which we represent 
by the angle-valued function ψ. With this representation not only 
the side condition |∂sz| = 1 is satisfied automatically, but also some of 
the energy terms are simplified. Most notably the bending compo-
nent of the energy functional is then written as

and the twisting of cross-links (6) simplifies to
T(t,s,a) = 2ψ(t,s) + γ(t,s,a) - α.
This ansatz allows the direct application of techniques for uncon-

strained optimisation problems.
We performed simulations based on equidistant discretisations of 

time and arc length and present the numerical long time result
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We start with the initial conditions  and  and 
alternate computing one timestep of the transport models for these 
densities and the minimisation step (10), where we start with a 
straight initial condition with arg zI(0) = -0.6 and arg zI(L) = -1/3 
and |zI(L)| = 1.05 x R0 as depicted in Figure 3.
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