Skip to main content
. Author manuscript; available in PMC: 2009 Feb 3.
Published in final edited form as: Diabetes Care. 1999 Jul;22(7):1165–1170. doi: 10.2337/diacare.22.7.1165

Table 2.

Multiple linear regression relating independent variables (x1x7) to five models with dependent variables (y1y5)

Dependent variables
Independent variables y1. Total cholesterol (mmol/l) y2. LDL cholesterol (mmol/l) y3. log10triglyceride (mmol/l) y4. HDL cholesterol (mmol/l) y5. Rf
x1. log10AER (mg/day) 0.128 (<0.001) 0.110 (<0.001) 0.179 (<0.001) −0.063 (0.024) −0.185 (<0.001)
x2. HbA1c (%) 0.106 (<0.001) 0.109 (<0.001) 0.125 (<0.001) −0.047 (0.130) −0.082 (<0.001)
x3. BMI (kg/m2) 0.192 (<0.001) 0.213 (<0.001) 0.238 (<0.001) −0.155 (<0.001) −0.055 (0.054)
x4. CCr (ml/s · 1.73 m−2) −0.101 (<0.001) −0.097 (<0.001) −0.075 (0.008) −0.014 (0.615) −0.015 (0.608)
x5. Intervention (0 = 1°, 1 = 2°) 0.030 (0.301) 0.048 (0.096) 0.033 (0.239) −0.058 (0.034) 0.015 (0.614)
x6. Sex (0 = female, 1 = male) −0.054 (0.063) 0.050 (0.084) 0.101 (<0.001) −0.365 (<0.001) −0.191 (<0.001)
x7. Group (0 = intensive, 1 = standard) 0.046 (0.164) 0.032 (0.331) 0.028 (0.378) 0.024 (0.443) −0.032 (0.322)
Model multiple r 0.285 0.292 0.357 0.421 0.312

Data for independent variables are the β-coefficients normalized by dividing by SD to allow for direct comparison of the strength of the independent variables (P value). Data for the model multiple r are for each dependent variable and represent how well the multiple linear model accounts for the effect of the set of independent variables on each dependent variable (equation form: y1–5 = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6+ β7x7, where β0 is the y-intercept of the regression line).