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Abstract: The present study was undertaken to evaluate the effects of high protein 
(soybean protein or casein) on the balance between production of free radicals and 
antioxidant level in digestive organs of mice. For this purpose, male (C57BL/6J) mice were 
adapted to experimental diets containing soybean protein or casein with 20% (normal 
protein diets, NPDs) or 60% (high protein diets, HPDs), and HPDs supplemented with 
0.06g/kg cysteamine. After two weeks of feeding, oxidative and antioxidative parameters 
in duodenum, liver and pancreas were measured. The results show that ingestion of high 
protein markedly increased contents of superoxide anion and malondialdehyde (MDA), 
decreased activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), 
catalase (CAT) and Na+ K+-ATPase, and content of reduced glutathione (GSH) in digestive 
organs of mice (P<0.05). Levels of oxidative parameters were lower and antioxidant 
capacity of both enzyme and non-enzyme was higher in mice fed with soybean protein 
than those fed with casein. In groups fed HPDs supplemented with cysteamine, oxidative 
stress was mitigated. However, oxidative parameter levels were still higher than those of 
NPD-fed groups. The present study indicates that ingestion of high protein diets could 
result in an imbalance between oxidant and antioxidant, and thus induce oxidative stress in 
digestive organs of mice. The oxidative damage was smaller in mice fed with high level of 
soy protein in comparison with casein. 
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1. Introduction 
 

The scientific literature on whether ingestion of high protein can cause adverse effects to the healthy 
population is controversial. High protein diets are suspected to be detrimental to the renal and hepatic 
functions, calcium balance and insulin sensitivity, such as increased urinary nitrogen excretion, 
glomerular filtration rate, kidney hypertrophy, renal hemodynamics and eicosanoid production in renal 
tubules [1-3]. In addition, increased risk of renal cell cancer [4] and a higher incidence of 
noninsulin-dependent diabetes (NIDDM) [5,6] have been linked to high-protein intake. Furthermore, 
Vlajinac et al. [7] and Holmes et al. [8] found a relationship between high-protein intake and prostate 

cancer and calcium oxalate nephrolithiasis. High protein ingestion increases amino acid oxidation and 
urea synthesis [9] and decreases the nutritional efficiency of energy utilization [10,11]. However, the 
reoxidation of reducing equivalents derived from amino acid oxidation is linked to the mitochondrial 
redox chain [12]. Free radical generation during mitochondrial oxygen reduction may lead to oxidative 
stress if the antioxidant capacity is insufficient to quench the extra free radical production. Thus, intake 
of high protein may cause a situation of physiological oxidative stress. 

It was reported that dietary-protein origin may influence cholesterol metabolism. Soybean protein, 
for example, as compared with casein, lowers plasma cholesterol concentrations in rats [13], exhibits 
anticarcinogenic effects [14], and regulates polyunsaturated fatty acid metabolism [15,16]. In addition, 
many findings showed that soybean protein had antioxidative activity. Madani et al. [17] reported that 
rats fed a soybean protein diet were found to have lower concentrations of plasma thiobarbituric 
acid-reactive substances (TBARS) than rats fed a casein diet. Soybean protein intake has been reported 
to inhibit oxidative modification of LDL in vitro [18]. Furthermore, Aoki et al. [19] found that intake 
of soybean protein may reduce paraquat-induced oxidative stress in rats. The present study was 
designed to investigate whether high protein (soybean protein or casein) could increase generation of 
free radicals and decrease antioxidant capacity in digestive organs of mice, and the effect of protein 
origin on the balance between oxidative levels and antioxidative abilities. 

 
2. Materials and Methods 
 
2.1 Animals and diets 
 

The care and use of the mice followed the institutional guideline of Jiangnan University. Male 
C57BL/6J mice (body weigh, 12–13 g; 3 wk old) were used in this study. All animals were housed 
under a controlled atmosphere (temperature, 23°C ± 1; relative humidity, 55 ± 5%; and a fixed 12-h 
light: dark cycle, light 0700 to 1900h). Prior to the feeding experiment they were allowed free access to 
deionized water and a semipurified diet (Shanghai, China; crude protein 180 g/kg, crude fat 40 g/kg, 
metabolizable energy 11.9 MJ/kg) for 10 days to allow acclimatization to these conditions. Then all 
animals were divided randomly into six groups of ten each. Group 1 and 4 (normal protein diets, NPD) 
received a normal diet containing 20% casein or soy protein, respectively. Group 2 and 5 (high protein 
diets, HPD) received a high protein diet containing 60% casein or soy protein, respectively. Group 3 
and 6 received HPDs supplemented with 0.06g/kg cysteamine. Casein and soy protein was exchanged 
isoenergetically by corn starch. The composition of the experimental diets is shown in Table 1. All 
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mice were allowed free access to the experimental diets and deionized water throughout the 
experimental period.  

Table 1. Composition of diets a. 
 

Ingredient 
Casein (g/kg diet) Soybean protein (g/kg diet) 

Group1 Group2 Group3 Group4 Group5 Group6 

Caseinb 200 600 600    
soybean proteinb    200 600 600 
Corn starchc 580 220 220 580 220 220 
Sucrose 60 20 20 60 20 20 
Soybean oil d 50 50 50 50 50 50 
Cellulose powder a 50 50 50 50 50 50 
Mineral mixture e 40 40 40 40 40 40 
Vitamin mixture f 20 20 20 20 20 20 
Cysteamine c   0.06   0.06 

(a) The diets were semipurified, isoenergetic (16.20 MJ/kg); (b) Shanghai, China; (c) 
Wuxi, China; (d) The commercial product (50 g/kg) provides 11.81% of energy. The 
soybean oil provides the following fatty acids: 14:0, traces; C16:0, 10.3; C16:1 ω-7, 0.1; 
C18:0, 3.9; C18:1 ω-7 +ω-9, 22.1; C18:2 ω-6, 54.8; C18:3 ω-3, 7.5; C20:0, 0.4; C20:1 
ω-9 + ω-11, 0.2; C22:0, 0.4; C22:5 ω-3, traces; C24:0, traces; sum of saturated fatty 
acids (S), 15; sum of monounsaturated, 22.4; sum of polyunsaturated fatty acids (P), 
84.7; P/S, 5.65; Σω-6/Σω-3, 7.3; (e) The salt mixture provides the following amounts 
(g/kg diet-1): Ca, 4; K, 2.4; Na, 1.6; Mg, 0.4; Fe, 0.12; trace elements: Mn, 0.032; Cu, 
0.005; Zn, 0.018; Co, 0.00004; I, 0.00002; (f) The vitamin mixture provides the 
following amounts (mg/kg diet-1): retinol, 12; cholecalciferol, 0.125; thiamin, 40; 
riboflavin, 30; pantothenic acid, 140; pyridoxine, 20; inositol, 300; cyanocobalamine, 
0.1; ascorbic acid, 1600; (dL) α-tocopherol, 340; menadione, 80; nicotinic acid, 200; 
paraaminobenzoic acid, 100; folic acid, 10; biotin, 0.6; choline, 2720. Group 1and 4 
(normal protein diets [NPD]), a normal diet containing 20% casein or soy protein, 
respectively; Group 2 and 5 (high protein diets [HPD]), a high protein diet containing 
60% casein or soy protein, respectively; Group 3 and 6, high protein diets plus 0.06g/kg 
cysteamine. 

 
2.2 Sampling procedures 
 

At the end of the experimental period, mice were deprived of food overnight but had free access to 
deionized water. Mice were sacrificed by decapitation and the whole duodenum, liver and pancreas 
were removed immediately, gently rinsed in ice-cold PBS and then were cut into 50- to 100-mg 
portions as tissue samples. They were frozen in liquid nitrogen and stored at -80°C for further 
treatment. After thawed, tissue samples were homogenized with ice-cold 0.9% NaCl solution and then 
were centrifuged at 4000g for 15 min at 4 °C. The supernates were used to determined protein content 
and antioxidant defense and lipid peroxidation. 
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2.3 Analytical methods  
  
2.3.1 Superoxide anion determination 
 

The level of oxidative stress was determined by specifically measuring superoxide anion, as 

described by Pick [20]. 
 
2.3.2 Lipid peroxidation determination 
 

Lipid peroxidation products, thiobarbituric acid reactive substances (TBARS), were measured by a 
standard method and are expressed as the content of malondialdehyde (MDA) in nanomoles per 
milligram of protein [21]. 
 
2.3.3 Glutathione peroxidase assay  
 

Glutathione peroxidase (GSH-Px) activity was measured according to the method of Hafeman et al. 
[22]. One unit of GSH-Px was defined as a decrease in the log of mmol GSH per minute and was 
expressed in unit per milligram protein. The automatically decrease of GSH without enzyme (control 
reaction under same condition) was subtracted from calculation. 
 
2.3.4 Superoxide dismutase assay 
 

Total superoxide dismutase (SOD) activity was assayed using hypoxanthine–xanthine 
oxidase-generated O2

- to reduce nitrotetrazolium (NBT) monitored spectrophotometrically at 550 nm. 
Inhibition of NBT reduction to 50% of maximal is defined as 1U of SOD activity and enzyme activity 
was expressed in units per milligram protein [23]. 
 
2.3.5 GSH assay 
 

Reduced glutathione (GSH) was measured by the procedure of Moron et al. [24]. In this procedure, 
reduced GSH reacts with 5,5-dithiobis-(2-nitrobenzoic acid) to produce a compound that absorbs at 
412 nm. 
 
2.3.6 Na+ K+-ATPase and catalase activity determination 
 

Na+ K+-ATPase and catalase (CAT) activities in digestive organs were determined by Reinila et al. 
[25] and Aebi [26], respectively, using commercial kits from Nanjing Jiancheng Bioengineering 
Institute. The protein content was determined using the method of Lowry et al. [27]. 
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2.4 Statistical analysis  
 

Data are reported as means ± SD, n = 10. Differences between mean values were determined by 
ANOVA followed by comparisons using the Newman-Keuls multiple range test. Differences with P < 
0.05 were considered significant. 
 
3. Results 
 
3.1 Superoxide anion content in duodenum, liver and pancreas of mice 
 

Figures 1 to 3 show the effect of high protein on superoxide anion content of soybean protein or 
casein-fed groups. There was a significant increase (P<0.05) in superoxide anion content in duodenum, 
liver and pancreas of HPD-fed mice. Superoxide anion content was strikingly lower in duodenum and 
liver of mice fed soybean protein than those fed casein. Treatment with cysteamine ameliorated the 
change induced by HPD feeding.  

Figure 1. Superoxide anion content in duodenum of mice. Bars represent means ± SD. 
Means not sharing the same letter are significantly different within experimental period 
(P < 0.05, n = 10). NPD, a normal diet containing 20% casein or soy protein; HPD, a high 
protein diet containing 60% casein or soy protein; HPD + CYS, high protein diets plus 
0.06g/kg cysteamine. 
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Figure 2. Superoxide anion content in liver of mice. Bars represent means ± SD. Means 
not sharing the same letter are significantly different within experimental period (P < 0.05, 
n = 10). NPD, a normal diet containing 20% casein or soy protein; HPD, a high protein diet 
containing 60% casein or soy protein; HPD + CYS, high protein diets plus 0.06g/kg 
cysteamine. 
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Figure 3. Superoxide anion content in pancreas of mice. Bars represent means ± SD. 
Means not sharing the same letter are significantly different within experimental week 
(P < 0.05, n = 10). NPD, a normal diet containing 20% casein or soy protein; HPD, a high 
protein diet containing 60% casein or soy protein; HPD + CYS, high protein diets plus 
0.06g/kg cysteamine. 
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3.2 MDA contents and SOD activities in duodenum, liver and pancreas of mice 
 

Feeding of the HPDs for 14 d resulted in the development of oxidative stress in experimental mice, 
as is evident from Table 2. There was a significant (P<0.05) increase in MDA content (78% and 104%, 
103% and 75%, 138％ and 150%, respectively), whereas lower SOD activity (35% and 29%, 28% and 
18%, 31% and 30%, respectively) in duodenum, liver and pancreas of mice fed casein and soybean 
protein. However, the level of oxidative parameter was lower, and antioxidant activity was higher in 
groups fed soybean protein diets compared with those fed casein diets. These abnormalities caused by 
HPDs were considerably reduced on treatment with cysteamine.  

 
Table 2. MDA contents and SOD activities in duodenum, liver and pancreas of mice. 

Groups 
MDA(nmol/mg prot) SOD(U/mg prot) 

Duodenum Liver Pancreas Duodenum Liver Pancreas 

Group1 2.67±0.12ab 3.91±0.26a 2.09±0.10a 95.04±3.57de 218.55±8.25c 98.92±2.51c 
Group2 4.76±0.26d 7.92±0.16c 4.99±0.12c 61.27±4.23a 158.28±4.73a 68.74±0.50a 
Group3 3.69±0.15c 5.84±0.16b 3.36±0.14b 79.66±2.36bc 185.09±4.82b 82.60±1.69b 
Group4 2.28±0.13a 4.44±0.41a 1.82±0.09a 98.35±3.46e 204.33±8.83c 101.44±1.78c 
Group5 4.66±0.35d 7.77±0.25c 4.55±0.22c 69.50±3.02ab 166.96±3.48ab 70.92±4.05a 
Group6 3.17±0.26bc 5.85±0.07b 3.09±0.34b 84.21±5.41cd 182.67±2.61b 85.77±4.34b 

Values are means ± SD, n = 10. Within an array, values without a common superscript significantly differ, 
P < 0.05. MDA, malondialdehyde; SOD, superoxide dismutase; Group 1and 4 (normal protein diets 
[NPD]), a normal diet containing 20% casein or soy protein, respectively; Group 2 and 5 (high protein 
diets [HPD]), a high protein diet containing 60% casein or soy protein, respectively; Group 3 and 6, high 
protein diets plus 0.06g/kg cysteamine. 

 
3.3 GSH-Px activities and GSH contents in duodenum, liver and pancreas of mice 
 

The HPD-fed groups exhibited strikingly lower activity of GSH-Px and GSH content in digestive 
organs compared to the NPD-fed groups (Table 3). Levels of antioxidant parameters were higher in 
soybean protein groups than casein groups. The HPD and treatment with cysteamine groups exhibited 
a similar GSH-Px activity except for duodenum. GSH contents were significantly lower in the HPD 
groups than in the treatment with cysteamine groups.  

 
3.4 CAT and Na+ K+-ATPase activities in duodenum, liver and pancreas of mice 
 

Table 4 presents the effects of high levels of soybean protein and casein on CAT and Na+ K+-ATPase 
activities. There was significant decrease (P<0.05) in CAT and Na+ K+-ATPase activities of HPD-fed 
mice compared with NPD-fed mice. CAT and Na+ K+-ATPase activities were higher in soybean 
protein-fed mice than casein-fed ones. Supplement with cysteamine increased significantly in CAT 
and Na+ K+-ATPase activities of HPD-fed mice.  
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Table 3. GSH-Px activities and GSH contents in duodenum, liver and pancreas of mice. 
 

Group 
GSH-Px(U/mg prot) GSH(mg/g prot) 

Duodenum Liver Pancreas Duodenum Liver Pancreas 

Group1 80.828±0.925e 59.963±0.206c 102.196±3.630b 99.22±0.32d 191.29±4.25c 153.02±4.69c 
Group2 58.748±1.073a 50.688±2.038a 88.169±4.244a 38.91±2.02a 78.23±1.93a 123.38±2.19a 
Group3 70.476±1.497c 53.818±0.306ab 97.560±5.194ab 65.59±1.65b 100.84±1.47b 138.97±2.23b 
Group4 82.610±0.324e 61.197±2.009c 100.362±1.224b 116.27±3.98e 184.34±6.07c 165.78±3.09d 
Group5 67.190±0.573b 52.718±0.297ab 91.768±2.533ab 44.31±1.58a 84.61±3.23a 130.29±1.73a 
Group6 76.610±0.566d 54.930±0.248b 97.689±1.692ab 78.72±6.80c 97.55±4.62b 146.11±1.33bc 

Values are means ± SD, n = 10. Within an array, values without a common superscript significantly differ, P < 
0.05. GSH-Px, glutathione peroxidase; GSH, reduced glutathione; Group 1and 4 (normal protein diets [NPD]), 
a normal diet containing 20% casein or soy protein, respectively; Group 2 and 5 (high protein diets [HPD]), a 
high protein diet containing 60% casein or soy protein, respectively; Group 3 and 6, high protein diets plus 
0.06g/kg cysteamine. 

 
Table 4. CAT and Na+ K+-ATPase activities in duodenum, liver and pancreas of mice. 

 

Groups 
CAT(U/mg prot) Na+ K+-ATPase(μmolPi/mg prot/hour) 

Duodenum Liver Pancreas Duodenum Liver Pancreas 

Group1 56.17±0.75e 82.16±0.21d 78.65±0.51c 21.53±0.32d 10.67±0.07c 3.14±0.29c 
Group2 25.08±1.10a 54.00±0.58a 56.54±1.65a 13.92±0.21a 1.95±0.23a 0.95±0.01a 
Group3 42.44±1.33c 73.13±1.46c 68.32±0.66b 15.97±0.23bc 5.47±0.14b 1.93±0.02b 
Group4 57.77±0.85e 82.13±1.48d 78.88±0.35c 22.53±1.02d 10.40±0.18c 3.72±0.44c 
Group5 37.54±1.91b 58.98±0.69b 57.16±2.94a 14.79±0.64ab 2.59±0.51a 0.99±0.06a 
Group6 46.24±0.77d 72.52±1.14c 70.22±0.45b 17.71±0.68c 5.76±0.61b 2.06±0.05b 

Values are means ± SD, n = 10. Within an array, values without a common superscript significantly 
differ, P < 0.05. CAT, catalase; Group 1 and 4 (normal protein diets [NPD]), a normal diet containing 
20% casein or soy protein, respectively; Group 2 and 5 (high protein diets [HPD]), a high protein diet 
containing 60% casein or soy protein, respectively; Group 3 and 6, high protein diets plus 0.06g/kg 
cysteamine. 

 
4. Discussion  
 

With the elevation of living standards, the amount of protein ingested by people has increased and is 
above actual nutritional requirements. However, whether the high protein intake will cause adverse 
effects to the healthy population is still controversial. Many findings indicate that high protein intakes 
(more than 40% protein level) increase the thermogenic response, which is accompanied by a lower 
efficiency of food energy utilization, an increase in oxygen consumption, and impaired oxidative 
phosphorylation capacities (lower adenosine diphosphate oxygen values for nicotinamide adenine 
dinucleotide-linked substrates in mitochondria) [28-30]. Thus, we assumed that high protein ingestion 
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could induce oxidative stress. In the present study, results showed that ingestion of high protein diets 
caused increments in the levels of oxidative parameters and decrease in antioxidative activity in 
digestive organs of mice. This imbalance between the production of free radicals and the ability of the 
organism's natural protective mechanisms is due to excessive oxidation of amino acids.  

Oxidative stress is one of the causative factors of many diseases such as atherosclerosis [31]. An 
imbalance between production of free radicals and antioxidant level leads to oxidative stress, which is 
obvious from the depressed antioxidant defense system in the HPD groups of our study. Cysteamine 
acts as an antioxidant for its sulfhydryl in relation to effectively scavenging free radicals (e.g., 
hydroxyl radical) [32]. Moreover, cysteamine can stimulate GSH synthesis [33]. In the present study, 
administration of cysteamine to HPD-fed mice prevented the buildup of oxidative stress by restoring 
normal activities of the enzymatic antioxidant SOD, CAT and GSH-Px and normal levels of the 
non-enzymatic antioxidant GSH in the digestive organs; the concentrations of these antioxidants were 
decreased in the HPD-fed mice. The diminished antioxidant defense system in HPD-fed mice leads to 
damage of the so-called lipid peroxidation system. We observed increased concentration of MDA, 
indices of lipid peroxidation, and superoxide anion, the precursor of most reactive oxygen species 
(ROS) and a mediator in oxidative chain reactions, in the peptic of HPD-fed animals. Administration 
of cysteamine decreased significantly the lipid peroxidation. This suggests that cysteamine played an 
antioxidant role in oxidative stress induced by the HPDs. 

Na+K+-ATPase, which is a cell membrane protease maintains the electrochemical potential gradient 
of Na+ and K+ ions in the membranes of cells, and plays an important role in the transport of 
substances, energy conversion and information transfer [34-36]. The decrease of its activity indicates 
substances and energy dysmetabolism [37]. In the present study, the activity of Na+K+-ATPase was 
markedly lower in mice fed the HPD compared with those fed the NPD, which indicates that oxidative 
stress induced by the HPD diets impairs biomembrane. Moreover, lesion of biomembrane led to the 
ion pumping dysfunction of the Na/K-ATPase, which could increase [Ca2+] and open mitochondrial 
ATP-sensitive K channel (mitoKATP) and further stimulate the production of ROS [37-39]. 

Dietary-protein origin may influence lipid peroxidations. Chiang and Kimura [40] reported that liver 

and testis lipid peroxide concentrations are significantly lower in stroke-prone spontaneously 
hypertensive rats (SHR) fed soybean protein than in those fed casein. In rabbits, the soybean protein 
diet lowers plasma cholesterol level and causes fewer atherosclerotic lesions compared with rabbits fed 
the casein diet [41]. Madani et al. [17] reported that concentrations of plasma TBARS were lower in 
rats fed a soybean protein diet than those in rats fed a casein diet. Aoki et al. [19] demonstrated that 
soybean protein has antioxidative effects on paraquat-induced oxidative stress in rats. The antioxidative 
activity of soybean protein can potentially be explained by its amino acid composition or the effects of 

soybean peptides. L-Arginine is reported to have antioxidative activity [42] and is more abundant in 
soybean protein than in casein. Suetsuna et al. [43] investigated the antioxidative activity of soybean 
protein hydrolysate and reported two soybean peptides with strong antioxidative activity. Antioxidative 
activity of histidine-containing peptides from soybean protein has also been reported [44]. In present 
study, lower levels of oxidative parameters (MDA and superoxide anion) and higher activities of 
antioxidant enzymes (SOD, CAT, GSH-Px) in digestive organs were observed in groups fed HPD with 
soybean protein than those fed HPD with casein. This result may be attributed to the antioxidative 
activity of soybean protein itself. 
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In summary, these findings suggest that oxidative stress may occur in digestive organs of mice 
because intake of high protein diets caused an imbalance between the production of ROS and the 
capacity of the antioxidant defense system. However, at the same level, the extent of oxidative stress in 
mice fed-soybean protein was lower than that in mice fed-casein. 
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