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It is hoped that comprehensive mapping of protein physical interac-
tions will facilitate insights regarding both fundamental cell biology
processes and the pathology of diseases. To fulfill this hope, good
solutions to 2 issues will be essential: (i) how to obtain reliable
interaction data in a high-throughput setting and (ii) how to structure
interaction data in a meaningful form, amenable to and valuable for
further biological research. In this article, we structure an interactome
in terms of predicted permanent protein complexes and predicted
transient, nongeneric interactions between these complexes. The
interactome is generated by means of an associated computational
algorithm, from raw high-throughput affinity purification/mass spec-
trometric interaction data. We apply our technique to the construc-
tion of an interactome for Saccharomyces cerevisiae, showing that it
yields reliability typical of low-throughput experiments from high-
throughput data. We discuss biological insights raised by this inter-
actome including, via homology, a few related to human disease.

computational biology � protein interaction networks � systems biology

The collection of protein physical interactions present in a
cell—the interactome—constitutes a cornerstone to systems

biology, because it is at the most fundamental level at which it is still
possible to perform an integrated analysis of a cell rather than just
an isolated study of individual components (1). For a system’s-level
functional understanding of a cell, we suggest that modeling an
interactome in terms of (i) predicted permanent (i.e., high-affinity)
protein complexes and (ii) predicted specific transient (i.e., lower-
affinity) interactions between such complexes and/or individual
proteins, while discarding (iii) generic, predicted less-specific tran-
sient interactions is a sensible choice. This alternative falls in
between a detailed structural characterization of each interaction
(2) and a binary protein–protein pairwise-only reporting of inter-
actions (3). The former of these two, the arguable system’s-level
functional relevance of the detail it provides aside, would certainly
be hard to realize accurately in a large-scale fashion because of
current experimental limitations. The latter of the two, because of
its scalability, can be very useful as a first approximation but is
ultimately less than ideal, because proteins do not work in a strict
pairwise fashion (4) besides the fact that significant functional
information can be lost under a purely on/off description of an
interaction.

We developed an algorithm to construct an interactome as
proposed above, based on raw data from high-throughput affinity
purification, followed by mass spectrometric identification (AP-
MS) assays (5–7). A key premise used is that, under ideal condi-
tions, every protein member of a given complex, when used as a bait,
should pull down every other protein in that same complex.
Although this ideal is not attainable in practice because of a variety
of experimental limitations, how close it comes to being fulfilled
provides a measure of the certainty that a given group of proteins
constitutes a complex in the cell. In this light, the problem becomes
one of searching for sets of proteins that fulfill the above test to a
specified minimum degree. Throughout the process, an appropriate
statistical correction is made to account for proteins that tend to
bind indiscriminately to other proteins and/or to the purification

column itself and that, as such, could more easily fulfill the test by
chance. Once a set of predicted complexes has been built, a set of
predicted putative pairwise transient interactions between these
complexes is assembled by submitting each pair of complexes to the
less-stringent test of partially appearing together in a single pull-
down assay. Now, from a functional perspective, transient interac-
tions can usefully be approximately divided into 2 qualitatively
distinct types, which we name here ‘‘wide-ranging’’ and ‘‘restricted.’’
The wide-ranging kind is associated with a protein/complex per-
forming a standard function on many target proteins/complexes.
An example of interactions of this type are those between a
chaperone and its, potentially, hundreds of targets (8). The re-
stricted kind of transient interaction occurs when 2 proteins/
complexes come together in a more delimited functional context,
for example a kinase-substrate transient interaction within a par-
ticular signaling pathway. Both kinds are of relevance, but because
of their functionally distinct nature, they are best addressed sepa-
rately, in particular so that, because of its pervasiveness, the
wide-ranging kind does not occlude the restricted kind, as may be
the case under the concept of hubs (9). In our interactome map, we
attempt to screen out the wide-ranging types by excluding predicted
transient interactions of complexes involved in more than a spec-
ified cutoff number of predicted transient interactions. With some
arbitrariness, we settled on 8 interactions as a biologically reason-
able choice for this cutoff. A detailed description of both the
permanent complex prediction algorithm and the transient inter-
action prediction algorithm, is given in Materials and Methods.

Results and Discussion
In this section, we apply our algorithms and rationale described
above to assemble a Saccharomyces cerevisiae interactome. The
experimental data source used is raw data from 3 large-scale
AP-MS studies on S. cerevisiae (5–7). Using our complex prediction
algorithm, we first build a set of predicted permanent complexes.
We then go on to further organize the interactome in terms of
restricted transient interactions between these complexes, leaving
wide-ranging interactions as a separate class of its own. Before
excluding wide-ranging interactions as prescribed, we enriched the
set of predicted transient interactions with kinase-substrate litera-
ture-curated interactions (Kinase and phosphatase database
(2007), accessible at www.proteinlounge/). We did so because
phosphorylation interactions are clear examples of what we deem
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transient interactions, and a sizable curated set of such interactions
was readily available (Kinase and phosphatase database (2007)
accessible at www.proteinlounge/). The final interactome built in
this fashion consists of 248 nodes (210 predicted multiprotein
complexes and 38 single kinases) and 113 restricted transient
interactions (65 predicted with our algorithm and 48 phosphory-
lation literature interactions) (Fig. 1). In addition, we will discuss a
diversity of biological topics in the context of this yeast interactome
in the process arguing for the quality of the predicted permanent
complexes and for the fact that the proposed interactome organi-
zation is biologically sensible and useful. Throughout, Fig. 1 will
serve as a go-to, summarizing figure, highlighting some of the
biological issues and cases discussed.

One complex and 1 kinase (HOG1) had more than the 8 cutoff
number of predicted transient interactions, with those interac-
tions being therefore classified as wide-ranging (Fig. 1). Subse-
quent examination showed this complex to be composed of 3
proteins, SRP1, KAP95, and NUP2, that are expected to tran-
siently interact with many proteins/complexes in a function-
nonspecific manner. These proteins are all involved in nuclear
protein import and are known to interact with dozens of partners
representing a broad range of functional categories (10, 11). This
is exactly the sort of wide-ranging interaction that we wished to

distinguish, one representing a standard function performed on
many targets/complexes and that could occlude the role of more
restricted interactions. Similarly, the protein kinase HOG1 is
involved in a multitude of distinct cellular processes, including
water homeostasis (12), arsenite detoxification (13), copper-
resistance (14), hydrogen peroxide response (15), and adapta-
tion to citric acid stress (16), among others.

We assessed the quality of the interactome map via a number of
distinct tests. First, we used a set of manually curated complexes
from the MIPS database (17) [in a form further refined for accuracy
by Lichtenberg et al. (18)] as a gold standard for comparison (Fig.
2). Second, because we were interested in comparing the reliability
of our predicted complexes with that of the MIPS gold standard
itself, we used a non-gold-standard-based measure, termed Seman-
tic Distance (19). Semantic distance (range: 0 to 1) provides an
automated measure of the distance among a complex’s protein
members with regard to annotation, in this case, based on the GO
database Biological Process and Cellular Component annotations
(20, 21) (Fig. 2). This test showed that the average Semantic
Distance among proteins within each of our predicted complexes
comes close to that for the gold-standard MIPS complexes. Fur-
thermore, it is relevant to note that some of the GO database
protein annotations and some of the MIPS dataset complexes may

Fig. 1. S. cerevisiae interactome.
Blue nodes represent 210 predicted
multiprotein complexes and 38 ki-
nases (node sizes proportional to
complex sizes). Light blue represent
113 putative predicted restricted
transient interactions between
nodes (65 complex–complex pre-
dicted interactions and 48 kinase–
substrate literature-based interac-
tions). The network is laid out in
Polar Map fashion (47, 48), with
each topological module placed in a
conical region with some blank
space in between the modules. A
diversity of biological issues and
cases discussed throughout the
main text are highlighted.
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be based on the same literature source, artificially deflating, to an
undetermined extent, the Semantic Distance within MIPS com-
plexes. Seemingly, this should be most pronounced in the case of the
Biological Process annotation. Defining a complex to be, in terms
of essentiality, fully homogeneous if either (i) knockout of any one
of its member proteins is lethal to the cell or (ii) no single member
protein knockout is lethal; we present the fraction of such fully
homogeneous complexes in a dataset as our third quality test (22,
23) (Fig. 3). A major advantage of this test is the apparent lack of
significant hidden biases or sources of noise: The essentiality
classification for most yeast proteins is reliable, and the test involves
neither the use of a less-than-perfect gold standard nor compari-

sons based on annotations that are always subjective by nature. In
this sense, the error bars shown in Fig. 3 likely constitute a correct,
nonunderestimated assessment of the error associated with the test,
an error that will decrease as the net number of predicted com-
plexes increases in future studies. In this study, it is already worth
noticing how the homogeneity above random (difference between
the background colored bars and the respective foreground gray
bars) of our predicted complexes is comparable with that of the
MIPS complexes, for 2-, 3-, and 4-protein-sized complexes. Taken
together with the Semantic Distance results, this leads us to
conclude that the integration of our algorithm with the latest
AP-MS high-throughput experimental techniques (6, 7) allows
large-scale prediction of complexes with a reliability typical of
low-throughput experiments.

As noted earlier, upon building a set of permanent complexes, we
extracted further information from the AP-MS raw data by building
a set of predicted putative transient interactions between the
permanent complexes (Fig. 1). Being of lower affinity, such inter-
actions are naturally harder to discern, present-day literature data
on transient complex–complex interactions being itself still com-
paratively sparse. This precludes a better net assessment of the
reliability of the transient interaction predictions. Given also the
lower stringency of this algorithm (vis-à-vis the complex prediction
algorithm), we emphasize the greater uncertainty over the reliabil-
ity of these predictions. Nonetheless, Semantic Distance tests show
that for both the GO Biological Process and the GO Cellular
Component annotations, the average Semantic Distance associated
with the class of predicted restricted transient interactions is higher
than the respective average for permanent complexes, although it
is lower than the respective average for the class of predicted
wide-ranging transient interactions (Fig. 4), consistent with expec-

Fig. 2. Reliability of predicted complexes. Detailed legend: MIPS, the set of
manually curated complexes from MIPS database (17), further refined for
accuracy by Lichtenberg et al. (18) (199 complexes); Valente et al. (all data), our
set of predicted complexes based on combined raw AP-MS data from refs. 5–7
(210 complexes); Valente et al. (Gavin 2006 data), our set of predicted com-
plexes based on AP-MS Gavin 2006 (6) raw data only (165 complexes); Krogan
2006, the predicted complexes in ref. 7 (546 complexes); Gavin 2006, the
predicted complexes in ref. 6 (491 complexes); Gavin 2006 (raw data), taking
each raw pulldown in ref. 6 as a predicted complex, without computational
treatment (1,751 complexes). Dots represent results under randomization of
the respective datasets (standard deviation values smaller than dot size).

Fig. 3. The fraction of complexes that are fully homogeneous in the sense
that either (i) knockout of any one of their member proteins is lethal to the cell
or (ii) no single member protein knockout is lethal. Analysis was performed
separately for complexes of sizes 2, 3, and 4 to avoid size-related biases (no
statistically significant data for larger-sized complexes was available). Error
bar shows 90% confidence interval for the underlying homogeneity fraction
(see Materials and Methods). Foreground gray bar shows expected homoge-
neity fraction under randomization of the respective data (see Materials and
Methods). Dataset source references are as noted in Fig. 2.

Fig. 4. Average Semantic Distance for pairs of proteins in different interaction
classes. These were calculated as follows: Within complex pair-average Semantic
Distance over all pairs of proteins A and B, where A and B are found in the same
predicted permanent complex; AP-MS based predicted restricted transient in-
teraction pair-average Semantic Distance over all pairs of distinct proteins A and
B, where A and B are in distinct predicted complexes that interact via an AP-MS
data-based predicted transient restricted interaction; Phosphorylation restricted
transient interaction pair-as in the previous case, but where the restricted tran-
sient interaction is now based on a kinase–substrate literature-reported interac-
tion; Wide-Ranging pair-average Semantic Distance over all pairs of distinct
proteins A and B, where A and B are in distinct predicted complexes that interact
via a transient interaction (either predicted or kinase–substrate literature-based)
classified as wide-ranging; Noninteracting, within module pair-average Seman-
tic Distance over all pairs of distinct proteins that belong to the same topological
module but that do not fall within any of the cases above; Random pair-average
Semantic Distance over all pairs of proteins present in the dataset. Assuming
independence of the observed Semantic Distances for pairs in a given class, 95%
confidence intervals for the predicted averages are shown (unless confidence
interval is smaller than data point size). The presence of correlations means that
these are underestimates of the true, hard to quantify errors (see Materials and
Methods). The x axis placement of data points was chosen for the purpose of
clarity.
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tations. As a concrete example, our method predicted a complex
mainly comprising protein components of the cleavage and poly-
adenylation factor complex (CPF) to transiently interact with a
complex mainly comprising protein components of the cleavage
factor IA complex (CFIA) (Fig. 1). The CPF and CFIA complexes
are both involved in the process of transcript poly(A) tail synthesis
and maturation and are known to transiently interact as part of this
process [see, for instance, Mangus et al. (24)].

In the past, S. cerevisiae underwent a whole-genome duplica-
tion event (25). A total of 22 paralog protein pairs originating at
this single event fall within our interactome. In only 1 of these
22 pairs, do the 2 proteins appear in distinct complexes. This
happens also to be the pair furthest apart in terms of protein
sequence homology [as per Blastp (26) score]. From the other 21
within complex paralog pairs, 18 are viable–viable pairs (i.e.,
single knockout of either of the paralogs is viable), with the
remaining 3 being viable–lethal pairs (i.e., one of the paralogs is
essential). Genetic interactions (27) are reported in the SGD
database (21) for 12 of the viable–viable pairs and for 1 of the
viable–lethal pairs [a dosage rescue case of SEC24 by SFB2 (28)].
Note that the absence of reported genetic interactions for the
other cases could be simply because of lack of testing. Alto-
gether, this evidence points to a picture where 2 paralogs could
remain similar enough to be redundant and used interchangeably
in a complex (19 potential such cases); paralogs could evolve to
having noninterchangeable roles, as evidenced by possession of
distinct knockout phenotypes (with no known dosage rescue
interaction), but still work within the same complex, as a
reminiscence of their common evolutionary origin (2 potential
such cases); paralogs could diverge to the point of acquiring roles
within different complexes altogether (1 potential such case).
This observed latter case, may conceivably illustrate the eventual
functional divergence of a complex into 2 complexes with
separate but still closely related functions: The 2 paralogs,
SNF12 and RSC6, are found in 2 different complexes that,
although distinct, are functionally related and share a subset of
proteins in common (10) (Fig. 1). SNF12 is a component of the
SWI/SNF complex, and RSC6 is a component of the chromatin
structure-remodeling complex (RSC). Both of these complexes
promote ATP-dependent remodeling of chromatin and thus
serve to regulate gene expression (29). In contrast, the paralogs
TIF4631 and TIF4632 may exemplify the prior case of paralogs
that can be interchangeably used within a complex (Fig. 1). Both
are individually nonessential, but together they form a synthetic
lethal pair. They are predicted to be part of a complex whose
remaining member, CDC33, is essential (Fig. 1). This opens the
possibility that the complex is performing some critical role
within the cell and that its functionality requires both CDC33
and either one of the two paralogs. We note that analysis and
interpretation of protein evolutionary rates in the context of our
assembled set of complexes may provide another interesting
research direction (30, 31).

The full homogeneity with respect to essentiality of many of our
permanent complexes (Fig. 3) hints that this property is oftentimes
intrinsic to the complex and to its role rather than to its individual
proteins. Likewise, certain pathologies may be more correctly
assigned to an intrinsic malfunction of a complex as a whole, rather
than to an individual or loose set of proteins (32–34). With this in
mind, we lifted our yeast interactome to human via homology (35)
and checked how known disease-associated genes and chromo-
somal loci relate to our interactome map. Interestingly, a number
of cases potentially pointing in this direction were found. One
complex provides an interesting example of 2, possibly related,
phenotypes associated with the same complex (Fig. 1): A gene in
this complex, WDR36, is known to cause a form of adult-onset
primary open-angle glaucoma (36). This condition is associated
with characteristic changes of the optic nerve head and visual field,
often accompanied by elevated intraocular pressure. Also in this

complex is UTP20, located at 12q23.2. This gene falls within a
chromosomal region identified as linked to severe myopia (37) (the
causative gene has not yet been identified). Severe myopia occurs
primarily as a result of increased axial length of the eye (37), but it
is known to be associated with glaucoma, cataracts, and other
ophthalmologic disorders (38). Both WDR36 and UTP20 are
known to be expressed in the retina and other tissues as well (36,
39). Another example of related phenotypes mapping to the same
complex is provided by a complex containing the gene PSMA6 (Fig.
1). A specific variant of this gene is known to confer susceptibility
to myocardial infarction in the Japanese population (40). A linkage
to a related phenotype, susceptibility to premature myocardial
infarction, has been reported at 1p36–34 (41) (again, no causative
gene has yet been identified). This region includes PSMB2, another
gene in the same complex. Linkage between various other cardio-
vascular phenotypes and genomic regions including genes from this
complex have also been reported, e.g., linkage between familial
atrial septal defect and 6p21.3 (42), a region that includes PSMB8
and PSMB9, genes that are also present in the complex.

There is by now accumulated evidence that protein complexes
define a distinct, relevant scale of functional organization in the cell
(4–7). Perhaps a subsequent higher-level scale of functional orga-
nization is provided by functional modules, or pathways, involving
groups of complexes/proteins that transiently interact. As an at-
tempt to probe for such hypothetical organization, we divide the
interactome into topological modules that are dense in predicted
restricted transient interactions (Fig. 1) (see Materials and Methods
and refs. 43 and 47). Individually, the functional relevance of some
modules is immediately apparent. For instance, 1 module consists
of 3 complexes whose proteins are all clearly related: Each is a
subunit of the central kinetochore, mediating the attachment of the
centromere to the mitotic spindle. One of the complexes appears to
comprise mainly proteins from the COMA subcomplex, a group of
proteins that together bridge subunits in direct contact with DNA
to those bound to microtubules (44). The other 2 complexes also
comprise proteins with a similar bridging function, but these
proteins are not members of the COMA subcomplex (45). With this
modular breakdown, we have now organized the predicted inter-
actome in terms of (i) permanent complexes, restricted (ii) AP-
MS-based transient interactions and (iii) phosphorylation transient
interactions, (iv) topological modules based on restricted transient
interactions, and (v) wide-ranging transient interactions. Of note
are the Biological Process distinct average Semantic Distances for
these classes (Fig. 4), overall supporting this proposed structuring
of the interactome. By comparison, regarding cellular component
average Semantic Distances (Fig. 4), wide-ranging interactions are
now comparable with phosphorylation-restricted transient interac-
tions, with even AP-MS-based restricted transient interactions
being now closer to both of these than to permanent complexes,
unlike they were with regard to biological process. This is consistent
with the more homogeneous nature, based on physical location, of
all transient interactions, the distinction among these classes being
fundamentally a functional one (in the sense defined by the
Biological Process GO annotation). Another observed difference,
is the now slightly-higher average Semantic Distance for modules
than for all transient interaction types, even wide-ranging ones,
which is consistent with modules being more physically extended
over multiple cellular components. Nonetheless, given the combi-
nation of uncertainty in the different classes’ average Semantic
Distances (see comments in Fig. 4 and Materials and Methods) with
the incompleteness and degree of inherent subjectivity of the GO
annotations, collection of additional data will be necessary to
confirm the biological relevance of organizing interactome data in
the fashion we have put forward.

We introduced a mathematical algorithm that, when combined
with the latest AP-MS high-throughput experimental techniques,
provides, under a higher throughput setting, the reliability typical of
traditional biochemical assays. The algorithm is ideally suited for
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large-scale AP-MS interactome mapping projects, because the
reliability (with regard to both sensitivity and specificity) of its
predicted complexes improves as the number of AP-MS assays
performed increases (see Materials and Methods). A way to orga-
nize protein interaction data, essentially in terms of permanent
complexes, transient restricted, and transient wide-ranging inter-
actions, is also proposed in this article. We believe this proposed
structuring is practical, biologically sensible, and appropriate for the
level of detail that present-day high-throughput protein interaction
assays provide. Hopefully, the ongoing improvement, both exper-
imental and theoretical, on how to handle protein interactions on
a global scale, will gradually help realize the full potential of
genome-wide protein interaction maps.

Materials and Methods
Complex Prediction Algorithm. Here, we describe the algorithm for predicting
permanent complexes. We assume a set of pulldown assay data of the form
a � {a, b, c, d}, meaning that protein a as a bait pulled down proteins a, b, c,
and d. Given a set of proteins {pi}, for each protein p in the set: Let P
(‘‘Possible’’) be the number of baits in {pi}, other than p, that produced
nonempty pulldowns. Let S (‘‘Seen’’) be the number of those pulldowns where
p was identified. If (i) for every protein in the set {pi} the ratio S/P is well-
defined, with S/P � Ccrit, where Ccrit is a predefined threshold, and (ii) the set
{pi} is not a subset of a larger set satisfying the above condition, then the set
{pi} is defined as a permanent complex.
Note 1. When �1 nonempty pulldown with a given bait b was performed (for
example, because data from multiple datasets is being used), the contribution
of these bait b pulldowns to the values S and P of another protein p in the same
set {pi} as b is determined as follows: P is still increased by 1. S is increased by
the fraction of the multiple bait b assays that pulled down p. In this fashion,
repeating the same pull downs multiple times provides a way to systematically
increase the accuracy of the S/P ratios and hence, ultimately, the accuracy of
the final complex predictions.
Note 2. From both S and P calculated for a given protein p as prescribed above,
a value D (‘‘Discount’’) is subtracted to further mitigate the effect of indis-
criminate interactions. D is defined as the largest integer such that the
probability of obtaining by chance a score S � D for p is equal or larger than
a prespecified threshold Bcrit. This probability is calculated under a random
model that uses the net data ratio (no. of baits with at least 1 assay that pulled
down p/no. of baits with a nonempty pulldown) as the base probability that
any given single assay pulls down p. For baits that had multiple assays in the
dataset, a single assay is assumed in this random model.
Note 3. The parameters Ccrit and Bcrit were set to 0.6 and 0.01, respectively,
based on both the biological reasonableness of these values and on the
overlap with the MIPS gold-standard reliability measure evaluation of other
possible values. This evaluation showed that reliability was not very sensitive
to the exact choice of Ccrit and Bcrit [see supporting information (SI)].

The problem of finding complexes now becomes the problem of finding
sets of proteins that satisfy the above definition of a complex. This appears to
be a computationally intractable problem, so here, we settled for a nonopti-
mal solution. We use the algorithm outlined below to search for complexes.
It yields a local optimal list of complexes in the sense that no single protein
addition to a complex in the list as well as no merging of any 2 complexes in
the list could still satisfy criterion (i) above.

Step 1. Take all proteins pulled down by a given bait as a ‘‘complex seed.’’ Check
for satisfaction of main criterion (i) above for this set of proteins. If it is satisfied, then
add this set to the list of potential complexes. If not, then prune the protein with the
lowest S/P score in the set (arbitrarily choose one in case of a tie) and recheck for
satisfaction of criterion (i). Repeat until a set satisfying (i) is found and hence can be
added to the list of potential complexes or until there is only 1 protein left (in which
case no potential complex was found from this seed). Repeat for all pulldown seeds,
building in this fashion a list of potential complexes.

Step 2. Test all possible pairs of proteins for satisfaction of criterion (i). Add
the pairs that satisfy the criterion to the list of potential complexes.

Step 3. Merge complexes in the list, whenever a merged complex satisfies
criterion (i). Repeat until no 2 complexes in the list could be merged and still
satisfy criterion (i). Note that the particular sequential order in which the
merges are done could, in theory, lead to a different final list of potential
complexes. An arbitrary merging order was chosen.

Step 4. For each complex in the list, iteratively, consider every possible
single protein addition, updating the complex by adding the protein to it if
criterion (i) was still satisfied. Repeat until no further single protein addition
is possible. Note that the particular order in which the proteins are tested

could, in theory, lead to a different final list of potential complexes. An
arbitrary testing order was chosen.

Step 5. Alternate Steps 3 and 4 until neither step can further change the
complexes in the list. Note that every complex in the final list satisfies criterion
(i) and that no merging of any 2 complexes in it could still satisfy criterion (i).

Because of pulldown data biases and limitations originating in a diversity
of factors, the above algorithm can spuriously yield what, in reality, is a single
complex as a number of distinct predicted complexes that do not fully overlap.
It proves valuable to submit the final list of predicted complexes above to a
coalescence process, as described below. It is important to note that after the
coalescence process, there is no longer a guarantee that the complexes in the
list satisfy criterion (i).

Coalescence process:
Step 1. Given a complex A and a smaller or equal-sized complex B, if at least

50% of the proteins in B are present in A, then add the remaining proteins in
complex B to complex A (without eliminating complex B from the list),
regardless of criterion (i). Every possible pair of complexes is subject to this
process, in turn. Note that the particular order in which the pairs are tested
could, in theory, lead to a different final list of complexes. An arbitrary testing
order was chosen.

Step 2. Complexes that are now subsets of larger complexes are eliminated
from the list.

Step 3. Repeat steps 1 and 2 until no further changes can be made.
Note 1. The above-mentioned 50% threshold was chosen based both on the
biological reasonableness of this value and on the overlap with the MIPS
gold-standard reliability measure evaluation of a range of other possible
values (see SI).

Restricted Transient Interaction Prediction Algorithm. Consider 2 permanent
complexes, A and B, as defined above. If a pulldown assay with bait p, where
p is a member of A but not a member of B, contains strictly �50% of the
proteins of A and strictly �50% of the proteins of B, then we define A and B
to transiently interact. The set of transient interactions was constructed by
checking every pulldown in the dataset and every pair of permanent com-
plexes for satisfaction of the above criterion.

Phosphorylation Transient Interactions. To our 65 AP-MS-based predicted
complex–complex transient interactions, we added 48 kinase–substrate re-
stricted transient interactions curated from the literature (Kinase and phos-
phatase database (2007) accessible at www.proteinlounge/) (an additional 9
interactions involving the HOG kinase were classified as wide-ranging). For
kinase or substrate proteins that were members of one of our predicted
complexes, we took the transient interaction to involve the respective com-
plex. Note that an additional 81 kinase–substrate literature-curated interac-
tions present in the same database (Kinase and phosphatase database (2007)
accessible at www.proteinlounge/) were not used in this work because they
did not involve any protein present in our 210 predicted-complexes dataset.

Overlap with MIPS Complexes. Given 2 complexes, their fractional overlap is
defined as (no. of protein species common to both complexes/net no. of
protein species in the 2 complexes). For example, if complex A � {a, b, c} and
complex B � {b, c, d}, then their overlap is 2/4.

In the Gavin 2006 raw dataset (6), only pulldowns where at least 1 protein
other than the bait was identified were considered.

Semantic Distance Between 2 Genes. To calculate the Semantic Distance between
2genes (or respectiveproteins),wefollowthemethodofLordetal. (19), except that
we treat ‘‘is-a’’ and ‘‘part-of’’ edges equivalently. Details are given in the SI.

Semantic Distance Within Complexes in Fig. 2 Plot. In Fig. 2, we employ the
following procedure to ensure that differences on the typical complex size on
different datasets do not lead to biases that would prevent a valid comparison
among the different datasets average Semantic Distances.

The Semantic Distance of a complex is the average Semantic Distance of all
of the pairwise combinations of protein members of that complex. The
Semantic Distance of a dataset is calculated by

1. Separately calculating the mean Semantic Distance for all complexes of
each given size.

2. Averaging the different complex sizes average Semantic Distances.

Note 1. Complexes containing any proteins without the relevant GO annotation
were excluded from the respective Semantic Distance calculation.
Note 2. Semantic distances were calculated only for complexes of size up to and
including 6 because of the statistically small number of complexes beyond this size.
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A base random case Semantic Distance was calculated for each dataset
(dots in Fig. 2). This was done by

1. Randomizing the dataset via a large number of pairwise protein permu-
tations among the complexes.

2. Calculating this randomized dataset Semantic Distance as described above.

Note. Standard deviations were determined for the randomized dataset Se-
mantic Distances by repeating the above process 50 times for each dataset,
and they were smaller than the data point size in Fig. 2.

Essentiality Homogeneity of Complexes (Fig. 3). Colored bar. For each dataset
and complex size, the underlying Fraction of Fully Homogeneous Complexes
whence the observed data were drawn is estimated in a Bayesian (46) fashion,
assuming a prior probability uniform in the [0,1] interval. The statistical mode
(no. of fully homogeneous complexes observed/no. of total complexes ob-
served) is reported in the main bar. The error interval reports the 90%
confidence interval for this underlying fraction.
Gray bar. The expected homogeneity under randomization of the data (the
foreground gray bar) is calculated based on the net fraction of lethal protein
appearances (i.e., the same protein species appearing in 2 different complexes is
countedtwiceforpurposesofcalculatingthis lethal fraction)oncomplexesof the
size in question, for the given dataset. For example, for complexes of size 3, if 0.4
of the protein appearances in complexes of size 3 in the dataset are essential
proteins and 0.6 are nonessential, then it is expected for 0.43 � 0.63 � 0.28 of the
complexes to be fully homogeneous with respect to essentiality (because the
complex could be ‘‘fully homogeneous lethal’’ or ‘‘fully homogeneous viable’’).

Throughout, complexes where the essentiality of every member protein
was not known were excluded from the analysis.

No statistically significant data were available for complexes of sizes larger
than those reported.

Semantic Distances in Fig. 4 Plot. In each case, the confidence interval for the
average Semantic Distance is calculated by assuming a Gaussian distribution for its
predictor X (via the Central Limit Theorem), hence leading to a 95% confidence
interval of the form (X � 1.96��n, X � 1.96��n), where n is the number of pairs
tested, and � is approximated by the observed sample standard deviation. This
confidence interval estimate assumes independence of the observed pair Semantic
Distances in a given interaction class. However, in reality, correlations of multiple
kinds are present (e.g., the Semantic Distances for the pairs of proteins (A, B) and (A,
C) are not independent in general, because of having protein A in common). This
makes the error bars in Fig. 4 underestimate the true, hard to quantify errors.

Human Interactome via Homology Matching. An homologous human version of
the yeast interactome was obtained by matching each yeast protein to its
human inparalog proteins, as per the Inparanoid database (35).

Interactome Modular Division. The ‘‘Q-modularity’’ algorithm of Clauset et al. (43, 47,
48)wasapplied toclusteringthenetworkof transient interactions. In thisalgorithm,
the basic criterion for selecting the partition into modules is that the fraction of
within-module transient interactions is maximized with respect to a base random
case.
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