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Abstract
This work presents an iterative expectation-maximization (EM) approach to the maximum a
posteriori (MAP) solution of segmenting tissue mixtures inside each image voxel. Each tissue type
is assumed to follow a normal distribution across the field-of-view (FOV). Furthermore, all tissue
types are assumed to be independent from each other. Under these assumptions, the summation of
all tissue mixtures inside each voxel leads to the image density mean value at that voxel. The
summation of all the tissue mixtures’ unobservable random processes leads to the observed image
density at that voxel, and the observed image density value also follows a normal distribution
(image data are observed to follow a normal distribution in many applications). By modeling the
underlying tissue distributions as a Markov random field across the FOV, the conditional
expectation of the posteriori distribution of the tissue mixtures inside each voxel is determined,
given the observed image data and the current-iteration estimation of the tissue mixtures.
Estimation of the tissue mixtures at next iteration is computed by maximizing the conditional
expectation. The iterative EM approach to a MAP solution is achieved by a finite number of
iterations and reasonable initial estimate. This MAP-EM framework provides a theoretical
solution to the partial volume effect, which has been a major cause of quantitative imprecision in
medical image processing. Numerical analysis demonstrated its potential to estimate tissue
mixtures accurately and efficiently.

Keywords
EM algorithm; MAP image segmentation; parameter estimation; partial volume effect; tissue
mixture fraction

I. Introduction
IMAGE segmentation plays an important role in quantitative analysis of medical imaging
data for various clinical applications. Traditional image segmentation algorithms cluster all
image voxels into several groups and assign a unique label to each group. Each label
indicates a specific tissue type for those voxels inside the corresponding group.

This label-based hard segmentation is only applicable to the extreme case where only a
single tissue type is present in a voxel and the observed image density at that voxel reflects
the characteristics of the particular tissue type. Due to the limited spatial resolution of
imaging device and the complex shape of tissue interfaces, not all voxels in each labeled
group contain the same tissue type, especially for those voxels near tissue interfaces which
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are most likely to contain more than one tissue type. The presence of a mixture of different
tissue types in a voxel is referred to as partial volume effect (PVE). Assigning one single
tissue label to each voxel with the presence of PVE causes a noticeable error in the
traditional hard image segmentation and compromises volumetric analysis in clinical
applications, e.g., in evaluation of multiple scloresis with congnitive impairment [1].
Improvement has been observed by soft image segmentation, which models for example the
probability or likelihood of an observed datum belonging to a tissue label as a classic finite-
mixture density distribution [1-4]. These soft segmentation algorithms [1-4] can reduce the
PVE to some degree. However, since they still assign a discrete tissue label to each voxel
(where the PVE is modeled indirectly via the classic finite-mixture likelihood cost fucntion
of the image data), their improvement was shown to be limited [1-4]. This is expected by
their indirect modeling of the PVE. Another class of soft image segmentation utilizes the
fuzzy C-mean cost function to indicate the membership of voxels in each group, where the
likelihood of a voxel belonging to its group is measured by the Euclidean distance [5, 6].
This class of soft segmentation algorithms faces the same limitation due to the same reason
of indirect modeling of the PVE.

Directly modeling different tissue types inside each voxel for PV image segmentation is
desired and has been a challenging task due to insufficient measurements to determine the
percentages or fractions of different tissue types in each voxel [7-11]. Because of the
challenge, most previous work focused on the mixture of two tissue types in a voxel [7-11].
Recently, Leemput et al. [12] presented a PV image segmentation algorithm which
determines different tissue components in each voxel by firstly down-sampling that voxel
and then labeling the down-sampled sub-voxels using hard segmentation. Finally, the
different tissue components in the voxel are estimated via the relative amount of each label
or class in the sub-divided image array of that voxel. Theoretically, this discrete PV image
segmentation would approach to an accurate solution for any number of tissue types in a
voxel when the down-sampling is repeated infinite times, resulting in an infinite number of
down-sampled subvoxels to be labeled. However, a high down-sampling rate is time-
consuming and inpracticable. In this paper, we present an alternative approach, which
determines the percentages of different tissue types inside each voxel in a continuous space
as those previous work [7-11] but without the limitation of only two tissue types in a voxel
and also avoiding the discrete labels of hard segmentation [12], and investigate its
performance by numerical simulations.

II. Methods
A. Statistical Model of Image Data

Let the acquired image Y be represented by a column vector in the form of {Yi,i = 1,...,I},
where I denotes the total number of voxels in the image. Each Yi is an observation of an

individual random variable with mean  and variance  at voxel i, i.e.,

(1)

where ni represents the noise associated with observation Yi. If noise ni is assumed as
statistically mutually independent among the I voxels, then given the mean and variance

distributions  and  respectively, the conditional probability distribution of the
acquired image Y can be described by
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(2)

In medical imaging applications, Y reflects the spatial distribution of K tissue types inside
the body. Near the interface of different tissue types, there are more than one and probably
K tissue types inside each voxel i. Ignorance of the substructures within each voxel will
result in the well-known PVE. Modeling the PVE is given below

B. Statistical Model of Tissue Mixtures
Let the contribution of tissue type k in voxel i to the observation of Yi at that voxel be
denoted by {Xik,i=1,...,I;k=1,...,K }. It is obvious that Xik is also an individual random

variable with mean  and variance , i.e.,

(3)

where nik represents the noise associated with the generally unobservable variable Xik. If
noise nik is assumed as statistically mutually independent among the I voxels and the K

tissue types, then given the distributions  and  respectively, we have

(4)

where X = {Xik,i=1,...I;k=1,...K} represents a random vector of size I · K .

As a result from equations (1) to (4), we have the following relationship between the
acquired image data {Yi} and the unobservable tissue variables {Xik},

(5)

and their related items,

(6)

More specifically, let Zik be the contribution percentage or fraction from tissue type k in
voxel i to observation Yi with conditions of

(7)

Furthermore let μk and νk be the mean and variance respectively of tissue type k fully filling
in voxel i and define [12]

(8)

then we have the following relationships
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(9)

The goal of image segmentation with consideration of the PVE is to estimate the K tissue
mixtures, specifically the percentages of different tissue types {Zik, k=1,...,K} in each voxel
i, under the condition that each tissue type k can be statistically characterized by the
conditional probability distribution p(.|.) of (4) via the tissue model parameters {μk,νk}. A
specific conditional probability distribution is, as an example, described below

C. Normal Statistics Model
Without loss of generality, we assume that the unobservable random variable Xik for each
tissue type k follows a normal distribution. By the relationship of (5), the acquired datum Yi
also follows a normal distribution. This normal statistics model for Yi is valid in most
applications of computed tomography (CT) and magnetic resonance imaging (MRI) [13-15].
Under this statistics model, equation (2) becomes

(10)

and equation (4) becomes

(11)

Estimating the tissue percentage parameters {Zik} and the tissue model parameters {μk,νk}
could be performed by maximizing the conditional probability distribution (10) with respect
to each corresponding parameter of {Zik,μk,νk}. This would result in a set of nonlinear
equations. Solving these non-linear equations can be very challenging even if it is
numerically tractable [16]. Given the many-to-one mapping of (5) and the description of the
unobservable variables of (11), the expectation maximization (EM) algorithm [17] would be
an alternative and effective solution for this parameter estimation problem

D. An EM Approach to Parameter Estimation Problem
In the EM framework [17], the observation at each voxel i or Yi is considered as an
incomplete random variable, while the underlying contributions of each tissue type k,
{Xik,k=1,...,K}, are considered as complete random variables which reflect the complete
tissue mixture information in each voxel. The probability distribution relationship between
the incomplete data {Yi} and the complete data {Xik} is depicted by the following integral
equation under the condition of (5)

(12)

where the integral is understood as the summation over all possible configurations of
{Xik,k=1,...,K}, given Yi. The EM algorithm [17] then seeks the solution of maximizing the
expectation of conditional probability distribution (11) of the complete data. Alternatively,
the M-step of the EM algorithm tries to maximize the expectation of the complete-data log
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likelihood utilizing the posterior distribution of the latent variables computed in the E-step,
given the observations {Yi}

The conditional probability distribution (11) is basically a likelihood function given the
tissue parameters. A maximum likelihood (ML) solution is usually not acceptable due to the
presence of image noise. To overcome this drawback of ML approach, an a priori constraint
is routinely imposed to ensure the continuity of the underlying tissue distribution and
possible rapid change at the interface of different tissue structures within the body for a
penalized ML (pML) or maximum a posteriori (MAP) solution

E. Prior Model for Tissue Mixture Regularization
The underlying tissue distribution is reflected by the tissue percentage distribution, or
distribution of {Zik}, across the field-of-view (FOV). Previous studies in hard segmentation
of brain MR images [4, 18] have evidenced the usefulness of Markov random field (MRF)
in modeling the distribution of the label images, where each label image reflects a tissue
type distribution across the FOV. It is assumed that a voxel surrounded by non-brain tissues
has a very small probability to contain brain tissues. This assumption can be implemented by
imposing both spatial and anatomical constraints. In this study, the concept of discrete tissue
label has been evolved to {Zik} in continuous space and, therefore, it would be
straightforward to extend the MRF model to the distribution of the tissue percentage {Zik}.
By a Gibbs functional in the well-established MRF framework [19], an a priori penalty on
the tissue mixture parameter distribution {Zik} for each tissue type k has the following
general form of

(13)

where {Zikεi} indicate the surrounding voxels of Zik in the neighboring system εi, C is a
normalization constant and β is an adjustable parameter controlling the degree of the
penalty. The energy function U(.) can be written as a quadratic form of

(14)

to ensure the continuity of the {Zik} distribution across the FOV, where index r indicates the
neighbors εi and wir is a weighing factor for different orders of the neighbors. A
sophisticated choice of wir could allow a rapid change of {Zik} across the FOV [19].

F. An MAP-EM Algorithm for Tissue Mixture Segmentation
Given equations (11)-(14), an EM approach to the MAP solution of estimating the tissue
mixture percentages {Zik} and the tissue model parameters {μk,νk} is presented below

(1) Initialization—As the very first step of the EM algorithm, several parameters including

{Zik} and {μk,νk} need to be initialized, denoted by  and . This step is
somewhat specific to applications and may need some a priori knowledge about the
concerned application [20]. For example, the number of tissue types K in the body may be
known as a priori information or estimated from the image data using information criteria

[2]. Given K, the initialization of model parameters  may be as follows as an
example. Each voxel is firstly assigned to one of K class labels by comparing its density to
empirically-determined K thresholds, and then those voxels belonging to the same class

label are grouped together to determine the corresponding mean and variance 

Liang and Wang Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



respectively. Initialization of  can be much more complicated and may need more a
priori information about the concerned application [20]. Assume a second-order
neighborhood would be sufficient to catch the image density transition from one tissue to

another one, the initialization of mixture percentages  may be as follows as an example.

Given the K labeled groups, the value of  for class k in voxel i is determined as the
relative amount of class k occuring in the second-order neighborhood of voxel i.

(2) E-step—This step computes the conditional expectation of the complete-data likelihood
p(X | ϴ) of (11), penalized by the MRF-modeled tissue component distribution p(Z) of (13),

given the acquired data {Yi} and the current parameter estimation . The
conditional expectation is expressed as

(15)

To complete the E-step of the EM algorithm, we must find the preceding conditional
expectations. Following the deduction of conditional expectation, we have

(16)

(17)

where  is the square of the n-th iterated estimate of .

(3) M-step—This step maximizes the conditional expectation of (15) for the (n+1)-th
iterated estimate of the tissue model parameters and mixture percentages by simply setting
the partial derivatives of Q(ϴ | ϴ(n)) with respect to μk,νk and Zik respectively to zero.

For the mean parameter μk, we have

(18)

For the variance parameterνk, we have

(19)
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For the mixture percentage Zik, the conditions of (7) shall be considered when taking the
partial derivative of Q(ϴ|ϴ(n)) with respect to Zik. There is not a simple formula similar to

(18) or (19) for {Zik}. Below we only present the equations for solution  with
different K values. Their related mathematical derivations will be given in Appendix. For

K=1, we have  from (7), and Q(ϴ | ϴ(n)) becomes a constant relative to Zi1. For
K=2, let Zi1=ξ, we have Zi2=1-ξ from (7), and Q(ϴ|ϴ(n)) becomes a function of ξ. By
setting the partial derivative of Q(ϴ | ϴ(n)) with respect to ξ to zero, we have the following

fifth-order equation to estimate 

(20)

where a, b, c, d, e and f are constants in the equation and have been determined by the
estimated results in the n-th iteration [21]. For K=3, let Zi1=ξ1 and Zi2=ξ2, we have Zi3=1-
ξ1-ξ2 from (7), and Q(ϴ | ϴ(n)) becomes a function of both ξ1 and ξ2. By setting the partial
derivative of Q(ϴ|ϴ(n)) with respect to ξ1 and ξ2 respectively to zero, we have two fifth-

order equations to estimate  and  (see Appendix for more details). The number of
fifth-order equations increases to three for K=4, four for K=5, and up to K-1 for K tissue
types. It is clearly seen that the mathematical complexity increases dramatically as K goes
beyond two.

The numerical complexity can be dramatically reduced if the conditional expectation (15)
can be approximated as a quadratic form. This approximation can be achieved by allowing

the terms of  in (15) to be estimated from the current-iterated results, i.e.,

, and by re-normalizing the penalized likelihood function with an adaptive factor
C(n) in (13). By this quadratic approximation, the solution for K=2 is given by the following
closed-form formula [22]

(21)

and , where , (μk)(n) and  have been given above. The solution for
K=3 is determined by two linear equations, instead of two fifth-order equations (see
Appendix for more details). The number of linear equations increases to three for K=4, four
for K=5, and up to K-1 for K tissue types. Solving the linear equations is much less complex
than solving the fifth-order equations

The presented MAP-EM framework above is based on the relationship (5) between the
observed datum Yi and the unobservable tissue contributions {Xik} inside each voxel i. This

relationship is different from the model of  used in the previous work, e.g.,

[7]. In the model of , Xk reflects the random variable of tissue type k fully
occupying a voxel, and ZikXk represents the fractioned random variable in voxel i and may
not reflect the random variable from a fraction of tissue type k, Zikμk, in voxel i. For more
general cases of signal-dependent noise, the random variable from the mean or signal Zikμk
shall be Xik, and the relationship between the unobservable mixture contributions and the
observable datum Yi shall be (5). If two tissue types occupy one half of a voxel,
respectively, then the total variance shall go to νk if the two tissue types are the same tissue
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type k. This is the case by the relationship (5). Because of the difference between (5) and

, we adapt the definitions of (8) [12] and the resulted expressions for the data
mean and variance of (9) are then different from those in [7]. The derived MAP-EM
algorithm (18)-(21) computes the tissue mixture percentages and the tissue model
parameters in a continuous space and does not assume any voxel size -- a noticeable
difference from the down-sampling based segmentation algorithm in [12].

In the following, we report numerical performance of solving the fifth-order equations, e.g.,
(20), and the linear equations, e.g., (21), for the tissue mixture percentages {Zik} in terms of
accuracy and computing time.

III. Numerical phantom simulation
A. Simulation Results for K=2

A.1. Data Simulations—For K=2 case in which each voxel contains no more than two
tissue types, a two-tissue phantom image of 256×256 array size was generated as follows
(the simulation is limited to two dimensions for simplicity). Tissue type 1 had a mean value
of μ1=100 units and variance of ν1=100 units. Its percentage distribution {Zi1} across the
FOV is shown in Figure 1(a). Each pixel in the upper (white) region was fully filled with
tissue type 1 (Zi1=1). The percentage decreased vertically down to zero across the (grey)
strip of ten-pixel width in the middle. Each pixel had zero percentage of tissue type 1
(Zi1=0) below the strip (i.e., the black region). A noise image {Xi1} of tissue type 1 was
simulated with Gaussian noise, where the image density Xi1 at pixel i was given by a

Gaussian noise generator [23] with mean of  and variance of . Tissue type
2 had a mean value of μ2=500 units and variance of ν2=300 units. Its percentage
distribution {Zi2} across the FOV is shown in Figure 1(b). A noise image {Xi2} of tissue
type 2 was simulated with Gaussian noise by the same procedure as simulating the noise
image of tissue type 1 above. Adding these two noise images together results in the
observable noise image {Yi}, which is shown in Figure 1(c).

A.2. Implementation of Equations (20) and (21)—The MAP-EM algorithm of (18)-
(19) with quadratic approximation of (21) was implemented by directly programming these
three equations using C++ language. When implementing the algorithm with the
mathematically exact formula of (20), we employed the QR program (C++ code) in [23] to
solve the fifth-order equation while equations (18) and (19) were directly programmed using
C++ language as described above. These source codes were complied in a Visual C++
environment on a HP XW8000 PC platform (2.4 GHz CPU and 2.0 GB RAM). The
complied programs with equation (20) (or theoretically exact implementation) and equation
(21) (or quadratic approximated implementation) each ran up to 60 iterations to ensure that a
stable solution is achieved. In our experiments below, a stable solution was observed after
ten iterations.

A.3. Convergence Comparison between Equations (20) and (21)—The
convergence performance of the MAP-EM algorithm using equations (20) and (21)
respectively was studied by the measure of the relative error

(22)
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where IR indicates the number of those pixels inside the PV horizontal strip in Figure 1.

Figure 2 shows, as an example, the result when the initial  had 50% deviation from the
ground truth. Similar results were observed for other initial errors from 10% up to 90% on

. A stable solution after ten iterations was observed. The computing time for the
iterative process was documented and plotted in Figure 3. The QR program for the solution
of (20) costs approximately 25% more computing time than the computation of (21) after 30
iterations.

A.4. Estimation of Tissue Model Parameters {μk ,νk}—We first studied the accuracy
of estimators (18) and (19) with known {Zik}. By setting the initial model parameters

 with 99.9% error from the ground truth of {μ1=100, ν1=100, μ2=500, ν2=300}

and fixing the mixture percentages  as the ground truth of Figure 1(a) and Figure 1(b)

at all iterations, we obtained the iterated results after thirty iterations  as shown in
Table 1, where the model parameters of the phantom image were computed over those
pixels inside the white and black regions in Figure 1(c) excluding the PVE (i.e., ignoring the
grey strip in the middle). These results indicate that the phantom image with Gaussian noise
is accurately simulated, and the estimation of the model parameters is robust regardless of
99.9% initial error.

We then repeated the above experiment by updating the mixture percentages  with

equation (20) and (21) respectively from the initial of  being the ground truth. The
iterated results after thirty iterations are shown in Table 2. The % error reflects the
difference of the iterated result from the corresponding ground truth. The updates by
equations (20) and (21) generated similar results. There is some difference in the estimate of
ν1 due to a smaller mean and larger variance for tissue type 1 in the phantom image, as
compared to that of tissue type 2. This difference was observed in all the experiments
performed in this study.

A.5. Performance Comparison between Equations (20) and (21)—To show the
robustness of the MAP-EM segmentation algorithm for different initial estimates on the

mixture percentages, we repeated the above experiment by allowing the initial  with
various % deviations from 10% up to 99.9%. The % deviations were generated by sampling

each  using the Gaussian noise generator [23] with a given % standard deviation from its
ground truth Zik in Figure 1. The iterated results after thirty iterations are shown in Table 3.
The value in the upper right corner of each cell was from the theoretically exact solution
(20), while the value in the lower left corner of each cell was from the quadratic
approximated solution (21). The percentage error of estimating the tissue mixture
percentages {Zik} in the table was computed from those pixels in the PV horizontal strip in
Figure 1. Because of the penalty, the percentages {Zik} in the white and black regions of
Figure 1 were accurately estimated. Both implementations with exact solution (20) and
approximated solution (21) generated similar results. Some difference in estimating the
variance of tissue type 1 {ν1} was observed and explained before.

B. Further Simulation Studies for K=3
A three-tissue phantom image of 256×256 array size was generated following the same
procedure as described in Section III.A.1 above for Figure 1. Tissue type 1 had a mean value
of μ1=230 units and variance of ν1=180 units. Its percentage distribution {Zi1} across the
FOV is shown in Figure 4(a). A PV strip of 10 pixel unit width is present vertically and
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horizontally, respectively, between the white (Zi1=1) and black (Zi1=0) regions. A noise
image {Xi1} of tissue type 1 was simulated with Gaussian noise, where the image density

Xi1 at pixel i was given by a Gaussian noise generator [23] with mean of  and

variance of . Tissue type 2 had a mean value of μ2=500 units and variance of
ν2=300 units. Its percentage distribution {Zi2} across the FOV is shown in Figure 4(b). A
noise image {Xi2} of tissue type 2 was simulated with Gaussian noise by the same
procedure as simulating the noise image of tissue type 1 above. Tissue type 3 had a mean
value of μ2=800 units and variance of ν2=500 units. Its percentage distribution {Zi3} across
the FOV is shown in Figure 4(c). A vertical PV strip of 10 pixel unit width is present
between the black (Zi3=0) region on the left and the white (Zi3=1) region on the right. A
noise image {Xi3} of tissue type 3 was simulated with Gaussian noise by the same
procedure as simulating the noise image of tissue type 1 above. Adding these three noise
images together results in the observable noise image {Yi}, which is shown in Figure 4(d).

The update of the tissue model parameters {μk ,νk} was performed by equations (18) and
(19) with 99.9% initial error, i.e., the same as the initial estimation in K=2. Various initial

errors from 10% to 99.9% were selected for the tissue mixture percentages  relative to
the ground truth in the pictures of Figure 4. The initial tissue percentages were updated by
both the theoretical solution of (A.7)-(A.8) and the quadratic approximation (A.9)-(A.10).
Since the QR program in [23] is valid only for a single equation of (20), not a set of more
than one equation of high orders, we adapted the Newton’s gradient program [23] to solve
the set of two fifth-order equations (A.7)-(A.8). The linear equations (A.9)-(A.10) were
coded directly by C++ language. Both the Newton’s program and C++ code of (A.9)-(A.10)
were complied and executed by the same computer as described in Section III.A.2 above.
The results after 30 iterations are shown in Table 4 for 50% initial error. The percentage
error of estimating the tissue mixture percentages {Zik} in the table was computed from
those pixels, which contain three tissue types, in the PV square area in the center of Figure
4(d). Both the theoretical solution and the quadratic approximation generated similar
estimates of the tissue model parameters and the tissue mixture percentages, the same
observation as seen in the study for K=2.

The convergence performance of the MAP-EM algorithm using the theoretical solution (A.
7)-(A.8) and the quadratic approximation (A.9)-(A.10) respectively is compared in Figure 5.
Equation (22) was used, here IR now indicates the number of those pixels inside the PV
square region of three tissue types in the center of Figure 4(d). A stable solution after 40
iterations was observed. A faster convergence for a tissue type of smaller mean and variance
was noted. A larger number of iteration is needed for pixels containing more tissue types.
The computing time for the iterative process was documented and plotted in Figure 6. The
Newton’s gradient program for solving the fifth-order equations (A.7)-(A.8) has the same
efficiency in computation compared to directly solving the linear equations (A.9)-(A.10).

IV. Digital brain MRI phantom study
A. Brain MRI Phantom Simulation

A more realistic MRI brain digital phantom was simulated via the anatomical model
available at the BrainWeb:http://www.bic.mni.mcgill.ca/brainweb/, which consists of a set
of three-dimensional (3D) “fuzzy” tissue membership volumes, one for each tissue type
(e.g., cerebrospinal fluid (CSF), grey matter, white matter, etc). Since the voxel values in
these volumes reflect the proportions of the tissues present in the voxels in the range of [0,
1], it is straightforward to obtain the tissue mixture distribution {Zik} for each tissue type k
for the PV model of (5)-(9). For the purpose of this study, a noise-free 3D image volume
was firstly simulated using the T1 sequence of the MRI simulator provided at the BrainWeb,
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where only those voxels labeled as CSF, grey matter and white matter were extracted
because of their dominating contribution to the phantom. Then the statistical mean
associated with each of the three tissue types, denoted by {μ1, μ2, μ3}, was computed by
referring to {Zik}. For each voxel i to be simulated, three independent Gaussian random
variables of mean Zikμk and variance Zikνk corresponding to the three tissue types were
generated individually and summed together, where {ν1 ,ν2 ,ν3} were user-defined tissue
variances, reflecting different noise levels. Based on the above arguments, a digital MRI
brain phantom of size 181×217×181, consisting of three tissue types, CSF, grey matter and
white matter, was simulated and its 82nd slice is shown in Figure 7(a). The associated
parameter sets of means and variances are listed in Table 5.

B. Estimation of Tissue Model Parameters, Given Ground Truth as Initial
In this section, the ground truth of {μk ,νk} for CSF, grey matter and white matter, as well

as {Zik} for each voxel were given as initial values of  and the MAP-EM
algorithm was run up to 100 iterations to ensure a stable estimation is achieved. For
comparison purpose, both theoretical and approximated solutions as outlined by equations
(20) and (21) were implemented and the results are tabulated Table 6. Both solutions have a
similar performance in parameter estimation.

C. Estimation of Tissue Model Parameters, Given Deviated Initials

Different from Section IV.B above where  were initialized as the ground truth
values, a more practical initialization strategy was taken in this section. Though the resulting

 would have certain deviations from their true values, this initialization
strategy is considered to be more realistic, and can be summarized into the following steps.

1. According to the histogram of the synthetic MRI brain phantom, each voxel i was
pre-assigned a discrete label from {1, 2, 3}, representing CSF, grey matter and
white matter respectively via a thresholding operation, denoted by Li, Li ∈ {1, 2,
3}.

2.
Based on {Li},  were calculated by grouping voxels which belong to the

same labeled class. Although  obtained in this way could not exactly

reflect the true statistical properties, especially for , they could be refined after
sufficient EM iterations steered by {Zik} which is the most impacting factor.

3.
The final and crucial step is to initialize . For each voxel i, the number of
contributing tissue types {Ni} alternatively determined via its 6-connected
neighbors in 3D image domain. Figure 8 illustrates such initialization process in the
case of 2D image space where “C”, “G” and “W” represent CSF, grey matter and
white matter respectively.

Once {Ni} have been determined for each voxel,  were accordingly initialized in such a
way that if Ni = 2, i.e., voxel i contains a mixture of CSF and grey matter for example, then

,  and . For the case of Ni = 3, then , , and

.

The estimated model parameters {μk ,νk} and tissue mixture components {Zik} after 100
EM iterations by the MAP-EM algorithm with both theoretical and approximated solutions
are summarized in Table 7, and the distribution maps of {Zik} in the 82nd slice
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corresponding to each tissue type are shown in Figure 7(b-c) respectively. For visual
judgment, the profiles of CSF, grey matter and white matter along both vertical and
horizontal directions by sampling a one-pixel-wide stripe on Figure 7(b-c) are shown in
Figure 9(a-c).

Both solutions showed some different performances in parameter estimation for mixed cases

of K=2 and K=3 across the FOV when the initials  were estimated from the
acquired image data. In light of the numerical simulation studies above where the cases of
K=2 and K=3 are known across the FOV, the different performances of the two solutions for
mixed cases of K=2 and K=3 across the FOV are likely due to the determination of the
number of tissue types in a voxel from the current iteration for the next iteration. The
theoretical solution uses the QR program for voxels containing two tissue types (K=2) and
the Newton’s gradient program for voxels containing three tissue types (K=3). The
approximated solution applies the same strategy for the set of linear equations (A.9)-(A.10)
for any K value. The following investigations will provide more insights on the difference.

D. Computational Analysis
In this section, the theoretical and approximated solutions were compared from two aspects:
(1) converging speed and (2) computing time.

D.1. Converging Speed—The model parameters {μk ,νk} are usually converging to a
stable estimate in less iterations than the mixture percentages {Zik} do. So we report the
converging speed of {Zik} as iteration number goes up. Curves describing how the error rate
of {Zik} varies along the EM iterations for each tissue type k are shown in Figure 10. Since
the constraint of Zi1 + Zi2 + Zi3 =1 leads to two degrees of freedom and, therefore, only the
changes of {Zik} associated with CSF and grey matter were plotted. The theoretical solution
converged to a stable estimate in less iteration number and had a slightly larger relative error
defined by (22), compared to the approximated solution.

D.2. Computing Time—The computing time of the theoretical and approximated MAP-
EM solutions for segmenting the 3D MRI brain phantom image of 181×217×181 array size
is shown in Figure 11 in unit of seconds as the iteration goes up. The computing time of the
theoretical MAP-EM solution is almost five times more than that of the approximated
solution for an equivalent EM iteration.

Comparing Figure 3 and Figure 6 to Figure 11 in terms of computing time for segmenting
the corresponding 2D numerical and 3D MRI brain phantoms respectively, it can be seen
that the number of voxels containing two tissue types is much larger than the number of
voxels containing three tissue types in the 3D MRI brain image. This is because that the
theoretical solution consumes more computing time for K=2 than the approximated solution
at an equivalent iteration. In clinical applications, we expect to have more voxels containing
two tissue types than voxels containing three or more tissue types and, therefore, the
approximated solution may have an advantage over the theoretical solution in computing
efficiency. By the results of Table 7 and Figure 9, both the approximated solution and the
theoretical solution have a similar performance in estimating model parameters and mixture
percentages of the three tissue types in the 3D MRI brain image.

V. discussion and Conclusion
In the mathematical derivation of the MAP-EM algorithm, we assumed K to be the total
number of different tissue types inside the body. The tissue model parameters {μk ,νk} of
these K tissue types were estimated using all the image data {Yi} by (18) and (19). In the
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implementation of (20) and (21) for estimation of the tissue mixture percentages {Zik}, only
datum Yi and its neighbors were used. Then the number of tissue types in each voxel varied
across the FOV. In other words, the total number of tissue types K inside the body can be
much greater than two, while the estimators (20) and (21) remain valid if a voxel contains no
more than two tissue types. Similarly, estimators of (A.7)-(A.8) and (A.9)-(A.10) in
Appendix are still valid if a voxel contains no more than three tissue types, despite the total
number of tissue types in the body is far beyond three. This was demonstrated by clinical
studies in segmenting patient abdominal CT images for virtual colonoscopy application [20].

Estimator (20) is mathematically exact. It is a fifth-order equation and would generate five
possible values for each Zi1 when the QR program in [23] is used. In most cases, the
constraint of 0 ≤ Zi1 ≤ 1 eliminated the other four possible values. Sometimes we
encountered a choice of one from two possible values for Zi1 in the range of [0, 1]. In these
cases, we chose the one which was closer to the previously iterated value. In contrast,
equation (21) determines a value for each Zi1 in the range of [0, 1]. However, because the
quadratic approximation is made at the n-th iteration, then the estimator (21) for {Zi1} at the
(n+1)th iteration is somehow bounded to the result at the n-th iteration, causing a slower
initial convergence compared to the theoretical solution (20) (see Figure 2 and Figure 10).
For K>2, the QR program is no longer applicable. When the Newton gradient program in
[23] was used, a same convergence speed was obtained as that of the quadratic
approximation (see Figure 5). This is because of the Newton gradient program searches the
solution from the n-th iterated result, a similar bound to the n-th iteration as that in the
quadratic approximation. For digital implementation of both theoretical solution and
quadratic approximation, we modified the condition 0 ≤ Zi1 ≤ 1 to be 0.01 ≤ Zi1 ≤ 0.99 to
avoid Zik being zero (or avoid numerical instability when Zik is in the denominator).

Both estimators of the theoretical solution and the quadratic approximation generated similar
results for the tissue mixture percentages {Zik}, leading to a similar estimate of the tissue
model parameters {μk ,νk} by equations (18) and (19). The computational efficiency was
also similar for both estimators when the Newton’s gradient program was used to solve the
set of fifth-order equations for the theoretical solution. There is no noticeable benefit to
solve a set of fifth-order equations for the tissue mixture percentages (e.g., equations (A.7)
and (A.8) in Appendix), as compared to solving a set of linear equations by the quadratic
approximation (e.g., equations (A.9) and (A.10) in Appendix), unless a more accurate
program, similar to or better than the QR program, is available to solve the fifth-order
equations. Therefore, the quadratic approximation may be a choice for practical applications
at present time.

Further validation of the algorithm by clinical studies is needed and is currently under
investigation for CT colonoscopy application [20], where several practical issues regarding
the MAP-EM implementation (e.g., initialization procedure, neighboring system
optimization for increase or decrease of the number of tissue types at a concerned voxel,
iteration speedup, recovery of submerged polyps inside tagged colonic materials, etc.) were
studied. The whole implementation pipeline including post-segmentation strategies for
removal of tagged colonic materials and extraction of mucosa layer from the MAP-EM
segmentation was comprehensively evaluated by 52 patient CTC studies, which were
downloaded from the website of the Virtual Colonoscopy Screening Resource Center, by
two well-trained and experienced radiologists.
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Appendix

This section provides the derivation for solution of { } by setting the partial derivative
of Q(ϴ | ϴ(n)) with respect to Zik to zero under the conditions (7). Equation (15) can be
rewritten as

(A.1)

where the energy function on the neighborhood of voxel i in the conditional expectation
term Qi,k (Zik ) at the n-th iteration is understood as

(A.2)

For K=1, Zi1 =1 from the conditions (7), and Q(ϴ | ϴ(n)) is independent from Zi1 and,
therefore, the partial derivative of Q(ϴ | ϴ(n)) with respect to Zi1 is zero for all voxels. This
is expected. In this case, the mean and variance estimates by (18) and (19) become

(A.3)

These estimates are also expected for an image consisting of a single tissue type. For K=2,
we have

(A.4)

By setting the partial derivative of Q(ϴ | ϴ(n)) with respect to Zi1 to zero, we had obtained
equation (20). By the quadratic approximation mentioned before, equation (A.4) becomes

(A.

5)

By setting the partial derivative of Q(ϴ | ϴ(n)) with respect to Zi1 to zero, we had obtained

equation (21). For a special case of  or  and ignoring the penalty term, equation

(21) converges to a stable solution of . For k=3, we have

(A.6)

By setting the partial derivative of Q(ϴ | ϴ(n)) with respect to Zi1 and Zi2 respectively to

zero, we can obtain two fifth-order equations for the solutions of  and ,

(A.7)

Liang and Wang Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(A.8)

where , , and all the coefficients have been determined by the results at
the n-th iteration. By the quadratic approximation (A.5) and setting the partial derivative of
Q(ϴ | ϴ(n)) with respect to Zi1 and Zi2 respectively to zero, we have two linear equations of

(A.9)

(A.10)

where the coefficients Ai, Bi, and Ci have been determined by the results at the n-th
iteration.

For K=4, we can derive three fifth-order equations, similar to (A.7)-(A.8), to estimate Zi1,
Zi2 and Zi3 with Zi4 = 1 - Zi1 - Zi2 - Zi3. By the quadratic approximation, we can derive three
linear equations, similar to (A.9)-(A.10), to estimate Zi1, Zi2 and Zi3 with Zi4 = 1 - Zi1 - Zi2 -
Zi3. In general cases of K tissue types, we can derive theoretically K-1 equations under
conditions (7) to estimate the K tissue mixture percentages in each voxel. In practice, there
are very few cases where K goes beyond 4.
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Fig. 1.
Simulation of a phantom image of two density levels with PVE. Picture (a) represents the
distribution of {Zi1} for tissue type 1. Pixels in the upper (white) region are fully filled with
tissue type 1, while pixels in the lower (black) region have zero percentage of tissue type 1.
Picture (b) reflects the distribution of {Zi2} for tissue type 2. Pixels in the upper (black)
region have zero percentage of tissue type 2, while pixels in the lower (white) region are
fully filled by tissue type 2. The PVE occurs between the white and black regions of ten-
pixel width in the middle. Picture (c) shows the two-tissue phantom image with Gaussian
noise.
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Fig. 2.
Comparison of iterated tissue mixture percentages against iteration number using the
theoretical solution (20) (solid line) and the approximated solution (21) (crosses), where β
=0.5 was used. A similar convergence rate was observed for both Zi1 and Zi2 because of the
condition (7), i.e., Zi2 = 1-Zi1 .
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Fig. 3.
Comparison of computing time (seconds) against iteration number between the theoretical
solution (20) (solid line) and the approximated solution (21) (crosses), where β =0.5 was
used
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Fig. 4.
Simulation of a phantom image of three density levels with PVE. Picture (a) represents the
distribution of {Zi1} for tissue type 1. Picture (b) reflects the distribution of {Zi2} for tissue
type 2. Picture (c) shows the distribution of {Zi3} for tissue type 3. The PVE occurs between
the white and black regions of ten-pixel width in the three pictures. Picture (d) shows the
three-tissue phantom image with Gaussian noise, where the center square area of ten-pixel
width contains three tissue types and the horizontal and vertical strips of ten-pixel width
contains two tissue types.
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Fig. 5.
Comparison of iterated tissue mixture percentages against iteration number using the
theoretical solution (solid line) and the approximated solution (crosses). Top one reflects the
error rate of Zi1, middle one reflects the error rate of Zi2 , and bottom one shows the error
rate of Zi3
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Fig. 6.
Comparison of computing time (seconds) against iteration number between the theoretical
solution (solid line) and the approximated solution (crosses)
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Fig. 7.
Simulated MRI brain phantom: (a) from left to right, they are noise phantom image at the
82nd slice, ground truth of {Zi1} for CSF, ground truth {Zi2} for grey matter, and ground
truth {Zi3} for white matter respectively, (b) estimated {Zik} by the theoretical MAP-EM
solution, and (c) estimated {Zik} by the approximated MAP-EM solution.
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Fig. 8.
Two-dimensional illustration of how to determine the number of contributing tissue types
inside each pixel, (a) pixel i is mixed by two tissue types: CSF and white matter; and (b)
pixel i is mixed by three tissue types: CSF, white matter and grey matter.
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Fig. 9.
Profiles of CSF (a), grey matter (b) and white matter (c) along vertical (left) and horizontal
(right) directions drawn from Figure 7(b-c) for visual evaluation.
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Fig. 10.
Error rate of {zik} decreases as the EM iteration number increases. (a) plot shows the
changes of {zik} associated with CSF by the theoretical and approximated MAP-EM
solutions, and (b) plot shows the changes of {Zik} associated with grey matter (GM) by the
theoretical and approximated MAP-EM solutions.

Liang and Wang Page 26

IEEE Trans Med Imaging. Author manuscript; available in PMC 2009 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 11.
Comparison of computing time (seconds) against iteration number between the theoretical
solution and the approximated solution for the MRI brain phantom study.
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TABLE 1

Iterated tissue model parameters by the MAP-EM algorithm with comparison to that of the phantom image. β
was set to zero to ignore the effect of the penalty

μ 1 μ 2 ν 1 ν 2

Result from the phantom image 100.08 500.04 99.60 296.62

Iterated result with fixed Zik 100.07 500.02 99.47 297.35
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TABLE 2

Comparison of iterated tissue model parameters using the theoretical solution (20) and the approximated
solution (21). β was set to zero to ignore the effect of the penalty

ERR(μ1) ERR(μ2) ERR(ν1) ERR(ν2)

Theoretical (20) 0.05% 0.00% 1.41% 2.18%

Approximated (21) 0.05% 0.00% 0.89% 2.24%
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TABLE 3

Comparison of iterated tissue model parameters and tissue mixture percentages using the theoretical solution
(20) (upper corner in each cell) and the approximated solution (21) (lower corner in each cell), whereb β =0.5
was used
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TABLE 5

Ground truth of the simulated brain MRI phantom

Phantom dimension 181×217×181

CSF statistics μ1 = 47 , ν1 = 5

Grey matter statistics μ2 = 111 , ν2 = 20

White matter statistics μ3 = 149 , ν3 = 30
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TABLE 6

Parameter estimation by both theoretical and approximated MAP-EM solutions, given the ground truth as
initials

Theoretical Approximated

Error rate of {Zi1} 0.93% 1.48%

Error rate of {Zi2 } 2.27% 2.17%

Error rate of {Zi3 } 3.13% 3.56%

Mean of CSF 46 46

Mean of grey matter 110 111

Mean of white matter 148 149

Variance of CSF 4 6

Variance of grey matter 14 19

Variance of white matter 22 27
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TABLE 7

Parameter estimation by both theoretical and approximated MAP-EM solutions using the new initialization
strategy

Theoretical Approximated

Error rate of {Zi1} 6.79% 4.68%

Error rate of {Zi2 } 9.60% 7.12%

Error rate of {Zi3 } 9.67% 9.97%

Mean of CSF 31 40

Mean of grey matter 109 112

Mean of white matter 151 149

Variance of CSF 13 6

Variance of grey matter 28 13

Variance of white matter 26 28
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