

NIH Public Access

Author Manuscript

J Am Chem Soc. Author manuscript; available in PMC 2009 July 23.

Published in final edited form as: *J Am Chem Soc*. 2008 July 23; 130(29): 9214–9215. doi:10.1021/ja803094u.

Electron Transfer-Initiated Diels-Alder Cycloadditions of 2′- Hydroxychalcones

Huan Cong, **Dustin Ledbetter**, **Gerard Rowe**, **John P. Caradonna**, and **John A. Porco Jr.*** *Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, Massachusetts 02215*

> A number of biologically active prenylflavonoid natural products have been isolated from the mulberry tree and related plants.¹ For example, kuwanon G $(1)^2$ and multicaulisin $(2)^3$ are Diels-Alder cycloadducts between prenylflavonoid dienes and 2′-hydroxychalcones (Figure 1). Related Diels-Alder cycloadducts4 include (−)-panduratin A (**3**) 5 and nicolaioidesin C (**4**).6 In order to access these natural products, we wished to develop methodology to construct the cyclohexenyl chalcone nucleus employing electron rich 2′-hydroxychalcone dienophiles. $\frac{7}{1}$ In this Communication, we report examples of such $[4+2]$ cycloadditions in a process likely involving electron transfer.8

> Our studies began with model reactions of *trans*-2′-hydroxy chalcone **5** and 2,3 dimethylbutadiene **6** (Table 1). Due to our inability to effect cycloaddition using Lewis acidpromoted ("LUMO" lowering) conditions, 9 we considered alternative modes of catalysis. Based on a recent report involving Diels-Alder dimerization of piperine, 10 we evaluated Co (I) catalysis¹¹ for cycloaddition. Initial studies revealed that cycloadduct **7** was observed as a single *trans*- diastereomer using CoI₂/1,10-phenanthroline (8)/ZnI₂/Bu₄NBH₄ (10/10/30/10) mol%) (entry 1),¹² which is in contrast to the 1,4-hydrovinylation of dienes and terminal alkenes employing a similar Co(I) catalyst system reported by Hilt and coworkers.^{11c} Further investigation revealed that the amount of $ZnI₂$ had a significant effect on the catalytic process (entries 1-3). Near quantitative conversion and isolated yield of 7 were obtained with $CoI_2/8/$ ZnI_2/Bu_4NBH_4 (10/10/60/10 mol%) as catalyst (entry 3). Lower conversion was obtained in the absence of ligand **8** (entry 4). Remarkably, cycloaddition in the absence of cobalt proceeded in slightly lower yield employing ZnI_2 and a catalytic amount of Bu₄NBH₄ (entry 5), either of which did not mediate the reaction alone (entries 6, 7). Moreover, no desired cycloadduct was observed with $Zn(BH_4)_2$ as catalyst.

> Further studies were undertaken to probe modifications of the chalcone dienophile (Table 2). Removal or methylation of the 2′- hydroxyl group (entries 1, 2) led to production of cycloadducts in lower overall yield in comparison to **7**. Reactions conducted without cobalt generally afforded lower isolated yields. Surprisingly, 4′-hydroxychalcone **13** did not undergo cycloaddition (entry 3), implying that chelation of $\bf{5}$ to ZnI_2 ¹³ may be necessary for cycloaddition. Additionally, a counterion effect for the Zn(II) source was observed $(I > Br >$ Cl) with ZnF_2 , $\text{Zn}(\text{OAc})_2$, and $\text{Zn}(\text{OTf})_2$ proving to be unreactive.¹²

> Encouraged by the success of the model reaction, we next evaluated a range of dienes and 2′ hydroxychalcones. [4+2] cycloadditions of select dienes and **5** were conducted in satisfactory isolated yield using $CoI_2/8/ZnI_2/Bu_4NBH_4$ (10/10/60/10 mol%) at 40 °C (Table 3). Reactions

E-mail: porco@bu.edu.

Supporting Information **Available:** Experimental procedures and characterization data for all new compounds. This material is available free of charge via the Internet at [http://pubs.acs.org.](http://pubs.acs.org)

without cobalt showed decreased reactivity (entries 1, 2). Notably, single regioisomers were observed for unsymmetrical dienes (entries 1, 4-6). Trisubstituted diene **25**, poorly reactive in conventional $[4+2]$ cycloadditions, 14 afforded cycloadduct 26 in moderate yield (entry 6). A number of highly electron-rich 2′-hydroxychalcones were also investigated (Table 4). For these dienophiles, a 20/40/120/20 mol% CoI₂/8/ZnI₂/Bu₄NBH₄ catalyst loading was found to be optimal. Lower yields were obtained with additional alkoxy substitution of the chalcone (entries 1, 3, and 5). The corresponding acetylated 2′-hydroxychalcones maintained high reactivity likely due to their less electron rich character (entries 2, 4, and 6).

The utility of acetylated 2′-hydroxychalcones in [4+2] cycloadditions was further established by the total synthesis of nicolaioidesin C (**4**) 6 (Scheme 1). Acetylated chalcone **39** was prepared in four steps¹² (74% overall yield) from commercially available $2'$,6'-dihydroxy-4'methoxyacetophenone. Diels-Alder cycloaddition of **39** and myrcene **23**, followed by saponification, afforded **4** as a single regioisomer in 52% yield. A 15% yield of **4** was observed in the corresponding reaction conducted without cobalt.¹²

Our finding that cycloadditions are observed with Bu_4NBH_4/ZnI_2 ¹⁵ in conjunction with literature reports documenting electron transfer from Bu_4NBH_4 to acceptor substrates¹⁶ suggests that radical anions¹⁷ may be involved in the catalysis. As shown in Scheme 2, coordination of ZnI₂ to 2'-hydroxychalcone 5 may afford complex 40. Preliminary cyclic voltammetry studies¹² indicate that **5** in the presence of ZnI_2 (CH₂Cl₂) shows two new irreversible reduction peaks (Ep,c −0.59 V, 0.36 V *vs.* SCE, respectively) compared to **5** alone $(E_{p,c} - 1.25 \text{ V} \text{ vs. } \text{SCE})$. The apparent shift in the halfwave reduction potentials to less negative values is expected to parallel the promotion of electron transfer, and may be attributed to carbonyl activation by ZnI₂. In the presence of electron donors such as $Co(I)^{11a}$ or borohydride, **40** may undergo metal ion-promoted single electron transfer18 to generate a chalcone radical anion **41**. 19 Regioselective addition of **41** to isoprene20 should afford a stabilized, allylic radical **42a** which may undergo ring-closing cyclization to produce ketyl intermediate **43**. Subsequent single electron transfer between **43** and another complex **40** may afford cycloadduct **16** and radical anion **41**, thereby restarting the catalytic cycle.

In summary, we have developed [4+2] cycloadditions of highly electron rich 2′ hydroxychalcones and dienes using catalyst systems composed of electron donor (Co(I) or BH_4^-) and a Lewis acid (ZnI₂). Mechanistic studies and further applications towards the syntheses of other natural product targets are currently in progress and will be reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgment

Financial support from the NIH (GM-073855), Merck, and Wyeth is gratefully acknowledged. We thank Dr. Aaron Beeler and Ms. Susan Cunningham (CMLD-BU) for HPLC assistance, and Dr. Branko Mitasev (Boston University) and Dr. Bruce Branchaud (Invitrogen) for helpful discussions.

References

- 1. Nomura T. Pure Appl. Chem 1999;71:1115.
- 2. Nomura T, Fukai T. Chem. Pharm. Bull 1980;28:2548.
- 3. Ferrari F, Delle Monache F, Suarez AI, Compagnone RS. Fitoterapia 2000;71:213. [PubMed: 10727827]
- 4. Stocking EM, Williams RM. Angew. Chem. Int. Ed 2003;42:3078.

J Am Chem Soc. Author manuscript; available in PMC 2009 July 23.

- 5. Tuntiwachwuttikul P, Pancharoen O, Reutrakul V, Byrne LT. Aust. J. Chem 1984;37:449.
- 6. Gu J-Q, Park EJ, Vigo JS, Graham JG, Fong HHS, Pezzuto JM, Kinghorn AD. J. Nat. Prod 2002;65:1616. [PubMed: 12444686]
- 7. Brito CM, Pinto DCGA, Silva AMS, Silva AMG, Tome AC, Cavaleiro JAS. Eur. J. Org. Chem 2006:2558.For Diels-Alder cycloaddition of 2′-hydroxychalcone, see:
- 8. Bauld NL. Tetrahedron 1989;45:5307.Radical cation cycloadditions:
- 9. a Otto S, Engberts JBFNJ. Am. Chem. Soc 1999;121:6798. b Barroso S, Blay G, Pedro JR. Org. Lett 2007;9:1983. [PubMed: 17447775]
- 10. Wei K, Li W, Koike K, Nikaido T. Org. Lett 2005;7:2833. [PubMed: 15987148]
- 11. a Baik T-G, Wang L-C, Luiz A-L, Krische MJ. J. Am. Chem. Soc 2002;124:9448. [PubMed: 12167039] b Chang H-T, Jayanth TT, Cheng C-H. J. Am. Chem. Soc 2007;129:4166. [PubMed: 17358070] c Hilt G, Lüers S, Schmidt F. Synthesis 2004:634. d Hilt G, Janikowski J, Hess W. Angew. Chem. Int. Ed 2006;45:5204. e Lautens M, Tam W, Lautens JC, Edwards LG, Crudden CM, Smith AC. J. Am. Chem. Soc 1995;117:6863. f Ma B, Snyder JK. Organometallics 2002;21:4688. g Achard M, Mosrin M, Tenaglia A, Buono G. J. Org. Chem 2006;71:2907. [PubMed: 16555854]Select examples of Co(I)-catalyzed cycloadditions:
- 12. See Supporting Information for complete experimental details.
- 13. Swamy SJ, Lingaiah P. Indian J. Chem., Sect A 1978;16:723.
- 14. Roush WR, Barda DA. J. Am. Chem. Soc 1997;119:7402.
- 15. Lau CK, Dufresne C, Bélanger PC, Piétré S, Scheigetz J. J. Org. Chem 1986;51:3038.and references cited therein
- 16. a Lucarini M, Pedulli GF, Alberti A, Paradisi C, Roffia S. J. Chem. Soc., Perkin Trans. 2 1993:2083. b Lucarini M, Pedulli GF. J. Organomet. Chem 1995;494:123.
- 17. a Borhani DW, Greene FD. J. Org. Chem 1986;51:1563. b Roh Y, Jang H-Y, Lynch V, Bauld NL, Krische MJ. Org. Lett 2002;4:611. [PubMed: 11843604]
- 18. Fukuzumi S, Okamoto T. J. Am. Chem. Soc 1993;115:11600.
- 19. Quintana-Espinoza P, Yáñez C, Escobar CA, Sicker D, Araya-Maturana R, Squella JA. Electroanalysis 2006;18:521.
- 20. Hilt G, Bolze P, Harms K. Chem. Eur. J 2007;13:4312.

Cong et al. Page 4

Figure 1. Select Diels-Alder Natural Products Derived from 2'-Hydroxychalcones

Scheme 1. Synthesis of nicolaioidesin C

J Am Chem Soc. Author manuscript; available in PMC 2009 July 23.

Scheme 2. Generalized Mechanism for [4+2] Cycloadditions

l,

a See Supporting Information for experimental details.

*b*_{Based on} ¹H NMR integration (average of two experiments).

c Isolated yield.

d Not observed.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Table 2

Chalcone modifications

a Condition A: 10/10/60/10 mol% CoI2/**8**/ZnI2/Bu4NBH4; condition B: 60/10 mol% ZnI2/Bu4NBH4, see Supporting Information.

b Isolated yield.

c Not observed.

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Diels-Alder Reactions of **5** and Dienes

a Condition A: 10/10/60/10 mol% CoI2/**8**/ZnI2/Bu4NBH4, 40°C; condition B: 60/10 mol% ZnI2/Bu4NBH4, 40°C, see Supporting Information.

b Isolated yields.

c Single regioisomer.

d Single *endo* isomer.

e 1.5:1 *exo/endo* ratio.

Table 4 Diels-Alder Reactions of Electron-rich 2′-Hydroxychalcones

a Condition A: 20/40/120/20 mol% CoI2/**8**/ZnI2/Bu4NBH4; condition B: 120/20 mol% ZnI2/Bu4NBH4, see Supporting Information.

b Isolated yields.