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Abstract

Background: Live attenuated influenza H5N1 vaccines have been produced and evaluated in mice and ferrets that were
never exposed to influenza A virus infection (Suguitan et al., Plos Medicine, e360:1541, 2006). However, the preexisting
influenza heterosubtypic immunity on live attenuated H5N1 vaccine induced immune response has not been evaluated.

Methodology and Principal Findings: Primary and recall B cell responses to live attenuated H5N1 vaccine viruses were
examined using a sensitive antigen-specific B cell ELISpot assay to investigate the effect of preexisting heterosubtypic
influenza immunity on the development of H5N1-specific B cell immune responses in ferrets. Live attenuated H5N1 A/Hong
Kong/213/03 and A/Vietnam/1203/04 vaccine viruses induced measurable H5-specific IgM and IgG secreting B cells after
intranasal vaccination. However, H5-specific IgG secreting cells were detected significantly earlier and at a greater frequency
after H5N1 inoculation in ferrets previously primed with trivalent live attenuated influenza (H1N1, H3N2 and B) vaccine.
Priming studies further revealed that the more rapid B cell responses to H5 resulted from cross-reactive B cell immunity to
the hemagglutinin H1 protein. Moreover, vaccination with the H1N1 vaccine virus was able to induce protective responses
capable of limiting replication of the H5N1 vaccine virus to a level comparable with prior vaccination with the H5N1 vaccine
virus without affecting H5N1 vaccine virus induced antibody response.

Conclusion: The findings indicate that previous vaccination with seasonal influenza vaccine may accelerate onset of
immunity by an H5N1 ca vaccine and the heterosubtypic immunity may be beneficial for pandemic preparedness.
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Introduction

Influenza pandemics can occur when new influenza subtypes

capable of both infecting and spreading easily among humans

emerge with a new hemagglutinin (HA) subtype (antigenic shift) to

which there is little or no population immunity. During the last

century, three novel influenza A hemagglutinin subtypes (H1, H2

and H3) have appeared; an H1N1 strain caused the catastrophic

‘‘Spanish flu’’ pandemic in 1918 [1] followed by milder pandemics

in 1957 and 1968 caused by H2N2 and H3N2 strains, respectively.

Importantly, the origin of the pandemic H2N2 and H3N2 viruses

has since been attributed to genetic reassortment events where

circulating human influenza viruses acquired novel HA subtypes

from avian influenza viruses [2,3]. Alarmingly, in the past decade, a

number of avian influenza viruses containing HA subtypes not

typically found in humans have crossed species barrier and infected

humans, raising concerns about a future pandemic. Highly

pathogenic avian H5N1 influenza viruses have infected only a

small number of individuals but are associated with a high mortality

rate and are perceived as a potential major global health threat.

Several strategies have been used to develop vaccines against

H5N1 viruses including inactivated whole virus vaccines, split or

subunit vaccines, live attenuated influenza vaccine (LAIV),

vectored vaccines, and DNA vaccines; many of these candidates

have shown promise in preclinical studies [4]. Seasonal LAIV has

demonstrated several attributes that would be important for an

effective pandemic vaccine including efficacy, an ability to protect

against antigenically drifted strains, an ability to elicit a rapid

immune response in an immunologically naı̈ve population, and a

highly efficient production system for the vaccine [5,6,7,8]. Several

prototypic pandemic LAIV (pLAIV) 6:2 reassortant viruses

containing the H5N1 HA and NA gene segments have been

produced on the backbone of six internal gene segments from the

cold-adapted (ca) A/Ann Arbor/6/60 vaccine strain [9], the

master donor virus (MDV-A) used to produce influenza A vaccine

strains for the seasonal FluMistH influenza vaccines (MedImmune).

These candidate H5N1 vaccine strains, A/HK/491/97 (HK97

ca), A/HK/213/03 (HK03 ca), and A/VN/1203/04 (VN04 ca),

were found to provide complete protection against lethal challenge

with homologous and heterologous wild-type (wt) H5N1 viruses in
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mice and offered complete protection against pulmonary replica-

tion of wt H5N1 virus in ferrets [7].

It has been observed that individuals who have recovered from

influenza infections develop broad subtype-specific immunity that

can protect them from subsequent infection by closely related drift

variants of the same subtype [10,11,12]. Although not nearly as

common, Schulman and Kilbourne [13] reported heterosubtypic

immunity in mice, where protection was induced by an influenza

virus belonging to a different subtype. Recently, there have been

several reports describing heterosubtypic immunity against H5N1

infection induced by influenza virus infection or vaccines in mice

[8,14,15,16]. The mechanistic basis of this type of immunity

remains undetermined, however, one study demonstrated a role of

the N1 component of the vaccine [17] and other studies suggest

that structural similarity of the H5 and H1 HA may mediate this

type of protection [18,19]. Kreijtz et al. [20] reported cross-

recognition of avian H5N1 influenza virus by human cytotoxic T-

lymphocyte populations directed against human influenza viruses

and suggested that the preexisting cross-reactive T-cell immunity

in humans may dampen the impact of a next pandemic if it is

caused by an H5N1 virus. The ferret is considered to be a suitable

mammalian host for seasonal influenza vaccine research [21,22]

and for efficacy studies of HPAI H5N1 vaccines [7,23,24].

Although ferrets immunized with a H1N1 ca strain were not

protected from replication of a wild-type H5N1 virus [7], however,

because LAIV has been shown to provide protection from strains

that are antigenically different from the vaccine antigen, we

investigated whether priming with a heterologous seasonal LAIV

vaccine containing different subtypes could influence the immune

response to H5N1 viruses in the ferret model. Such studies will

also help us to understand whether live attenuated H5N1 vaccine

could induce effective immune response in individuals that have

immunity to seasonal influenza viruses.

HAI and microneutralization assays are frequently used to

measure humoral antibody responses, however, these assays may

not be sensitive enough to detect early and local antibody

responses. To assess the presence and magnitude of heterosubtypic

immunity following immunization with LAIV, a sensitive B cell

ELISpot assay was developed that could detect early induction of

immunity at a time when the HAI assay was less sensitive. Using

this assay, we show that local B cell responses induced by the

H5N1 VN04 ca and HK03 ca vaccine viruses can be detected at a

virus-specific and HA-specific level. Previous infection with an

H1N1 virus induced a faster and higher level B cell response to

H5N1 vaccination and could prevent shedding of the H5N1

vaccine virus. The data implies that priming with a non-H5

vaccine may enable a more rapid memory response to an H5

vaccine, however, whether this would be beneficial to the

effectiveness of an H5 vaccine remains to be determined.

Materials and Methods

Viruses
Influenza virus vaccine strains H1N1 A/New Caledonia/20/99

ca (NC99 ca), H3N2 A/Wyoming/03/03 ca (WY03 ca), H3N2 A/

California/7/04 ca (CA04 ca), H5N1 A/Hong Kong/213/03 ca

(HK03 ca), H5N1 A/Vietnam/1203/04 ca (VN04 ca), H2N2 A/

AA/6/60 ca, (AA60 ca or MDV-A) [22] and H1N2 reassortant ca

virus containing the H1 HA from A/New Caledonia/20/99 and

the N2 NA from A/Wyoming/03/03 were generated by reverse

genetics. All viruses were expanded at 33uC for 3 days in the

allantoic cavity of 10-day-old embryonated SPAFAS hen’s eggs

(Norwich, CT). Allantoic fluids collected from infected eggs were

examined by hemagglutination assay using 0.5% turkey (tRBC) or

horse (hRBC) erythrocytes to determine HA titer. Infectious virus

titer was determined by plaque assay (plaque forming unit, PFU)

or 50% tissue culture infectious dose (TCID50) using Madin-Darby

canine kidney (MDCK) cells. Viruses were inactivated by

treatment with b-propriolactone (BPL) for use as antigen in

ELISpot and ELISA assays. Trivalent LAIV (FluMistH) was

manufactured by MedImmune and contained 107 TCID50 each of

6:2 reassortant vaccine strains, A/New Caledonia/20/99 ca, A/

California/7/04 ca, and B/Jilin/20/03 ca.

Animal studies
Ferrets between 7 and 10 weeks of age from Triple F Farms

(Sayre, PA) were screened prior to use in experiments for

preexisting antibodies to H1N1, H3N2 and H5N1 influenza

viruses by hemagglutination inhibition (HAI) assay. Sero-negative

ferrets were inoculated intranasally on day 0 with a predetermined

does of a monovalent vaccine virus (105 to 107 PFU or TCID50

virus), trivalent LAIV, or medium (mock control). To examine the

B cell response and virus replication after primary infection,

animals were sacrificed 5 or 10 days post-inoculation to collect

paratracheal lymph nodes (TLN) and whole blood for B cell

ELIspot assays; serum was collected to measure serum antibody

level and nasal turbinates were harvested to examine virus

replication in the upper respiratory tract. To examine the effect

of previous influenza virus infection on the induction of H5N1-

specific immune responses, ferrets were given a second intranasal

inoculation of 107 or 108 PFU of homologous or heterologous

vaccine virus 4–6 weeks after the initial vaccination. Animals in

these latter groups were sacrificed 3–10 days later to collect TLN,

blood, serum, and nasal turbinate samples or were used to collect

serum samples for up to three weeks after the second vaccination.

All animal study protocols were approved by MedImmune’s

Institutional Animal Care and Use Committee and performed in

an AAALAC certified facility.

Measurement of virus titers in animal tissues
Nasal turbinate tissues were homogenized in MEM medium

and centrifuged at 400 g for 10 min. Serial 10-fold dilutions of

supernatants collected from each preparation were inoculated into

three 10- to 11-day old embryonated SPAFAS hen’s eggs. After

incubation at 33uC for 72 hr, allantoic fluid from each egg was

collected for HA assay using 0.5% tRBC. Virus titers in the tissues

are reported as a 50% egg infectious dose (EID50) per gram of

tissue processed.

B cell ELISpot assay
AcroWellTM 96-well PVDF filter plates (Pall Life Sciences, Ann

Arbor, MI) were coated with 50 mL/well PBS containing either

2,000 HA unit/mL of BPL-treated vaccine virus or 10 mg/mL

recombinant HA protein derived from H5N1 A/VN/1203/2004

(rH5), H1N1 A/New Caledonia/20/99 (rH1), or H3N2 A/

Wyoming/03/03 (rH3) that were purified from recombinant

baculovirus infected insect cells (Protein Sciences, Meriden, CT).

After overnight incubation at 4uC, plates were washed 3 times with

PBS and blocked with RPMI-1640 medium containing 10% FBS

for 2 hr at 37uC prior to the addition of cell samples.

Whole blood samples from ferrets were collected in EDTA

tubes and processed using LympholyteH-Mammal (Cedarlane,

Ontario, Canada) to isolate peripheral blood mononuclear cells

(PBMC). PBMC were washed once with RPMI-1640/10% FBS

by centrifugation (300 g for 10 min), counted, and resuspended in

complete medium (RPMI-1640, 10% FBS, 2 mM L-glutamine,

0.5 nM ß-mercaptoethanol and penicillin/streptomycin). TLN

were harvested from each ferret and placed in cold PBS/5% FBS

H5N1 Vaccine
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and the cells were released from TLN into the media by gently

rubbing partially minced tissue against a sterile mesh screen with a

glass pestle. The resultant cell suspension was collected, passed

through a cell strainer to remove large debris, and pelleted by

centrifugation (300 g for 10 min). Cell pellets were washed once,

counted, and resuspended in the RPMI-1640 complete medium.

PBMC and TLN cell suspensions were added to triplicate wells

(100 mL/well) at a concentration of 36106/mL for PBMC or 105

to 106/mL for TLN samples and incubated at 37uC, 5% CO2 for

5 hr. The plates were washed 5 times with PBS containing 0.05%

Tween-20 (PBS-T) to remove the cells from the plate. To measure

isotype-specific B cell responses, goat anti-ferret IgM (Rockland,

Gilbertville, PA) or goat anti-ferret IgG (Bethyl Laboratories,

Montgomery, TX) diluted 1:1000 in PBS-T/1% BSA and

incubated overnight at 4uC. After 5 washes with PBS-T, HRP-

conjugated rabbit anti-goat Ig (Dako, Carpinteria, CA) diluted

1:2000 in PBS-T/BSA was added to all wells and incubated at

37uC for 1 hr. Plates were washed 3 times with PBS-T and 3 times

with PBS before development with AEC substrate (Vector Labs,

Burlingame, CA) for 10 min at room temperature (RT). Wells

were rinsed extensively with water and allowed to dry completely

before spots in each well were counted using an ImmunoSpot plate

reader (Cellular Technologies, Ltd., Cleveland, OH).

HAI and microneutralization assays
Prior to serologic analysis, ferret sera were treated with

receptor-destroying enzyme (RDE) (Denka Seiken, Tokyo, Japan)

that was reconstituted with 10 mL of 0.9% NaCl per vial. 0.1 mL

serum was mixed with 0.15 mL RDE and incubated at 37uC for

18 hr and adjusted to a final 1:4 dilution by adding 0.15 mL of

0.9% sodium citrate followed by incubation at 56uC for 45 min.

Strain-specific serum HAI titers were determined using 0.5%

tRBC or hRBC and the HAI titers are presented as the reciprocal

value of the highest serum dilution that did not inhibit

hemagglutination. Serum neutralizing antibody titers were

determined by microneutralization assay using MDCK cells.

RDE-treated ferret serum was 2-fold serially diluted, incubated

with 100 TCID50 virus at 33uC for 1 hr and transferred onto

MDCK cell monolayers in 96-well culture plates (Costar, Corning,

NY). After 6 days’ incubation at 33uC, the cell monolayers were

fixed with 10% formaldehyde, incubated with chicken MDV-A

polyclonal antibody followed by incubation with an HRP-

conjugated rabbit anti-chicken IgG (Thermo, Rockford, IL), and

developed with TMB substrate (Sigma, St. Louis, MO). The

reaction was stopped with an equal volume of 0.1 N HCl and the

absorbance at 450 nm was determined using a SpectraMax plate

reader (Molecular Devices, Sunnyvale, CA). Neutralizing antibody

titers were calculated as the highest serum dilution with a value less

than that calculated by the formula of (average OD of virus-

infected wells - average OD of cell control wells)/2+average OD of

cell control wells.

ELISA analysis of HA-specific antibody responses
96-well EIA plates (Costar, Corning, NY) were coated with

0.025 mg/well of rH1, rH3 or rH5 in PBS overnight at 4uC. Plates

were washed 3 times with PBS-T and blocked with SuperBlock

Blocking Buffer (Pierce, Rockford, IL) for 1 hr at 37uC. RDE-

treated ferret sera were 2-fold serially diluted with PBS-T,

transferred to 96-well plates (50 mL/well), and incubated for

1 hr at 37uC. Plates were washed with PBS-T and incubated for

30 min at 37uC with 100 mL/well HRP-conjugated goat anti-

ferret IgG (Bethyl Laboratories, Montgomery, TX) diluted

1:10,000 in PBS-T/1% BSA. After washing with PBS-T, plates

were developed with TMB substrate and read as described above

in the microneutralization assay. Antibody titers are expressed as

the highest dilution with an optical density (OD) reading greater

than 2 times the mean OD+standard deviation of similarly diluted

negative control samples.

Results

Detection of H5N1-specific B cell responses after
immunization with pLAIV using a sensitive B cell ELIspot
assay

Pandemic live attenuated influenza vaccines (pLAIV) developed

for H5N1 viruses confer protection against wild-type virus

challenge in mice and ferrets [7], however, the level of the serum

HAI antibody responses induced by the VN04 vaccine was low.

We sought to implement a more sensitive ELISpot assay to

measure whole virus- and HA-specific antibody secreting cells

(ASC) in draining paratracheal lymph node (TLN) and PBMC

from vaccinated ferrets. The ELISpot assay has been shown to be

a sensitive tool for detecting cellular immunity following influenza

vaccination in humans [25,26,27]. To test the sensitivity of this

ELISpot assay, ferrets were inoculated intranasally with either the

H5N1 VN04 ca or H5N1 HK03 ca vaccine virus and were

sacrificed 5 or 10 days later to isolate TLN cells and PBMC. The

ELISpot data obtained from TLN samples (Fig. 1) showed that

H5N1 virus-specific ASC could be detected after vaccination with

either of the H5N1 ca vaccine viruses and similar data were

obtained from PBMC (data not shown). However, the magnitude

and kinetics of IgM and IgG ASC induced by the VN04 ca vaccine

appeared to be lower and slower than the HK03 vaccine virus on

both days 5 and 10 post-vaccination (Fig 1). The virus-specific IgM

ASC response was higher on day 5 than day 10 for HK03 ca virus

immunized animals, but higher on day 10 than day 5 for VN04 ca

virus immunized animals, indicating that the initial IgM response

induced by the VN04 ca virus was slower and weaker than that

induced by the HK03 ca virus. The IgG secreting ASC response

was much higher on day 10 than day 5 for both HK03 ca and

VN04 ca vaccine immunized animals. Again, HK03 ca vaccine

induced more IgG ASC than VN04 ca vaccine (p,0.05). H5 HA-

specific IgM and IgG ASC were also detected on day 10 for both

viruses. However, the level of HA-specific ASC was only about

15% of the total virus-specific ASC, indicating a majority of the

ASC induced by H5N1 ca virus vaccine were against antigens

other than HA. The level of the H5 HA-specific ASC on day 5 was

lower than on day 10 (data not shown). Thus, consistent with the

HAI data, the ELISpot data also showed that the HK03 ca vaccine

induced a better immune response than the VN04 ca vaccine.

LAIV-vaccinated animals show a more rapid immune
responses to the H5N1 ca vaccine than unvaccinated
animals

Most people have some immunity to influenza H1N1, H3N2,

and B viruses due to previous natural infections or immunization

with influenza vaccines. To mimic this sero-positive status and to

determine whether preexisting heterosubtypic immunity affects

responses to subsequent vaccination with H5N1ca vaccine viruses,

ferrets were primed intranasally with live attenuated trivalent

seasonal influenza vaccines (LAIV) or medium control prior to

vaccination with the H5N1 HK03 or VN04 ca viruses. Five days

after vaccination with H5N1 ca vaccine, TLN and PBMC samples

were collected for analysis by B cell ELISpot assay to measure

virus- and HA-specific IgG ASC. Responses detected using whole

virus reagents (Fig. 2A) revealed that the number of H2N2 (AA60,

MDV-A) and H5N1 (HK03) virus-specific IgG ASC were
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significantly higher in ferrets primed with LAIV (Fig. 2A). This

was not completely unexpected because both the H1N1 and

H3N2 viruses in LAIV share the same internal viral proteins such

as the M1 and NP that likely stimulate rapid B cell responses.

However, LAIV priming also significantly enhanced H5 HA-

specific IgG ASC responses, which were not detected in the

unprimed ferrets (Fig. 2A). This finding suggested that the

enhanced H5 HA-specific responses could occur as a result of

expansion of memory B cells that were elicited against the H1N1

and/or H3N2 influenza A virus components in the LAIV vaccine.

H1N1 vaccine primes faster B cell responses to the H5N1
vaccine than the H3N2 vaccinated animals

To determine whether the higher numbers of H5-specific B cell

responses observed after trivalent LAIV priming were due to only

one or both of the influenza A virus components, groups of ferrets

were primed with monovalent H1N1 NC99 ca, H3N2 CA04 ca,

H5N1 HK03 ca vaccine or medium six weeks prior to a second

inoculation with the H5N1 HK03 ca vaccine. Five days after

vaccination with the H5N1 HK03 ca vaccine (Fig. 2B), the level of

virus-specific IgG ASC was very low in the ferrets that initially

received medium, similar to that observed in the first study. In

contrast, ferrets that were primed with the H1N1 NC99, H3N2

CA04 or H5N1 HK03 ca vaccine viruses, had significantly higher

numbers of H5N1 HK03 ca virus-specific IgG ASC after

vaccination with the H5N1 HK03 ca vaccine. The ferrets that

were previously vaccinated with the H1N1, H3N2 and H5N1 ca

vaccine viruses also had B cell response to the H1N1 and H3N2

vaccine virus (Fig. 2B). The number of the H5 HA-specific IgG

ASC was the highest (approximately 10% of total virus-specific

ASC) in the group that received 2 doses of HK03 ca virus (Fig. 2C).

Interestingly, a significant number of H5 HA-specific IgG ASC

(approximately 180 ASC per 106 cells) was also observed in the

group that previously received the H1N1 NC99 ca vaccine virus. A

much lower number of ASC was found in the group that received

the H3N2 CA04 ca vaccine virus. As expected, a significant

number of H1 and H3 HA-specific IgG ASC (approximately 250

and 140 per 106 cells, respectively) were detected in the groups

that were primed with the H1N1 NC99 and H3N2 CA04 ca

vaccine viruses, respectively.

H1N1 ca vaccine-induced faster B cell responses to the
H5N1 vaccine virus is due to the H1 HA

The neuraminidases of the H5N1 and H1N1 viruses are of the

same (N1) subtype. Several studies have reported a role of the N1

NA-mediated immunity against H5N1 infection in the murine

model and in serology analysis of human serum samples

[14,17,28]. Because it was shown earlier that previous exposure

to H3N2 virus did not affect H5-specific ASC responses and the

H1 HA and H5 HA share some structural similarity [18] and

common epitopes [19], the effect of the H1N1-mediated priming

on the H5N1 ca vaccines was investigated. To confirm that the

enhanced B cell response to the H5N1 virus was due to a primary

immune response to the H1 HA not the N1 NA, an H1N2 virus

containing the HA from the H1N1 NC99 ca virus, the NA from

the H3N2 WY03 ca virus and the internal protein gene segments

from MDV-A was generated. Priming with this H1N2 virus in

ferrets elicited a similar level of B cell response (122 ASC per

million cells) as those (120 ASC per million cells) primed with the

H5N1 HK03 vaccine virus (Fig. 3), confirming that the enhanced

H5N1 B cell response was due to the H1 HA and not the N1 NA.

The number of the H5 HA-specific IgG ASC in the H1N2 virus

primed ferrets was higher than those primed with the H1N1 ca

vaccine virus, which was possibly due to the better replication of

the H1N2 ca virus than the H1N1 ca virus in the upper respiratory

tract of ferrets (data not shown).

H5-, H1- and H3-specific serum antibody responses
following prime-boost vaccination in ferrets

As described earlier, previous exposure to a virus containing the

H1 HA resulted in an increased H5-specific B cell response. To

examine if the increased ASC response reflected a greater

antibody response, serum antibody titers were examined by

HAI, microneutralization and ELISA assays. Groups of ferrets

were immunized with medium, the H1N1 NC99 ca, H3N2 CA04

ca, H5N1 HK03 ca or VN04 ca virus, and 6 weeks later, a second

dose of the H5N1 HK03 ca or VN04 ca vaccine was administered

intranasally. Serum samples were collected 6 weeks after the 1st

vaccination (post dose 1) and 1 and 3 weeks after the 2nd

vaccination (Table 1). At 6 weeks after the first dose neutralizing

antibodies against homologous vaccine virus were detected in the

ferrets that received vaccine virus but not in the control group that

Figure 1. H5N1-specific B cells were detected in ferrets infected
with live attenuated H5N1 ca vaccines. Ferrets were intranasally
administered the H5N1 VN04 ca or HK03 ca viruses on day 0. Five and
ten days post-inoculation, ferrets were sacrificed to collect paratracheal
lymph nodes (TLN) and a B cell ELISpot assay was performed using
lymphocytes isolated from TLN and BPL-inactivated H5N1 HK03 ca virus
or rH5 HA antigens. The number of IgM ASC (A) and IgG ASC (B) are
presented as per 106 lymphocytes.
doi:10.1371/journal.pone.0004436.g001
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Figure 2. Previous exposure with seasonal LAIV or H1N1 ca virus induced a faster H5N1-specific immune response. (A) Ferrets were
intranasally inoculated with either medium or trivalent LAIV on day 0. Six weeks later, ferrets were intranasally inoculated with the H5N1 HK03 ca
vaccine and five days later, lymphocytes isolated from TLN were examined for ASC against H2N2 MDV-A, H5N1 HK03 ca viruses and rH5 HA antigens
by B cell ELISpot analysis. Ferrets were intranasally inoculated with medium or the monovalent H1N1 NC99, H3N2 CA04, H5N1 HK03 ca vaccine

H5N1 Vaccine
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received medium only. The H3N2 CA04 ca vaccine induced the

highest mean neutralizing antibody (titer of 4064) and the H1N1

NC99 ca vaccine induced a mean neutralizing antibody titer of 50.

Neither H1N1 nor H3N2 ca viruses induced antibodies that cross-

neutralized the H5N1 HK03 ca virus. The H5N1 HK03 ca

vaccine induced the H5-specific neutralizing antibody at a mean

titer of 320 (Table 1). One week after administration of the H5N1

HK03 ca vaccine, the ferrets that received two doses of the HK03

ca vaccine had levels of H5-specific neutralizing antibody that were

significantly higher than in animals that received a single dose of

the H5N1 HK03 ca virus. In contrast to the B cell ELISpots

results, animals primed with a dose of H1N1 ca and boosted with a

second dose of H5N1 ca for one week had low titers of antibodies

against the H5 antigen (Table 1). Previous vaccination with the

H3N2 CA04 ca vaccine had little effect on the antibody response

to the H5N1 ca vaccine. When measured at three weeks after

vaccination with the H5N1 HK03 ca virus, the level of the H5-

specific antibody in the animals that received a dose of medium,

the H1N1 NC99 or H3N2 CA04 ca vaccines as the first dose was

much lower (3- to 5-fold) than the animals that received two doses

of the H5N1 HK03 ca vaccine virus.

The effect of H1N1 ca vaccination on the H5N1 VN04 ca

vaccine induced antibody response was also evaluated (Table 1).

As expected, H1N1-specific antibody did not cross-react with the

H5N1 VN04 ca virus. One week after the second vaccination with

the H5N1 VN04 ca virus, H5N1-specific neutralizing (titer of 50)

antibodies were detected in the ferrets that previously received the

H1N1 NC99 ca vaccine, and this titer was significantly higher than

the ferrets that received medium only (titer of 14, p,0.005) but

much lower than the animals that received two doses of the H5N1

VN04 ca vaccine (titer of 806). However, three weeks after

vaccination with the H5N1 VN04 ca vaccine there was no

difference in antibody levels between the animals that received the

first dose of medium or the H1N1 NC99 ca vaccine. Again,

animals that received two doses of the H5N1 HK03 ca vaccine had

neutralizing antibodies more than 5-fold higher than those that

received the H1N1 or H3N2 ca vaccine as the first dose. Thus, the

H1 HA induced enhanced production of H5N1-specific neutral-

izing antibody was temporary. Similar results were also obtained

by the HAI assay (data not shown).

To further evaluate the H1 induced priming effect on the H5N1

antibody response, an ELISA assay was performed to measure

levels of HA-specific serum IgG antibodies using rHA as the

antigen (Fig. 4). Six weeks after the 1st vaccination, a substantial

Figure 3. The priming effect of the H1N1 ca vaccine is induced
by the H1 HA. Ferrets were intranasally inoculated with the H1N1
NC99 ca virus, a reassortant H1N2 ca, H3N2 CA04 ca or H5N1 HK03 ca
virus on day 0 and intranasally inoculated with the H5N1 HK03 ca virus
five weeks later. The animals were sacrificed 5 days later and B cell
ELISpot analysis was performed with lymphocytes isolated from TLN
using rH5 HA as antigen. IgG antibody secreting B cells are presented as
the number of ASC per 106 lymphocytes.
doi:10.1371/journal.pone.0004436.g003

viruses on day 0 and intranasally inoculated with the H5N1 HK03 ca vaccine six weeks later. The B cell ELISpot analysis was performed with
lymphocytes isolated from TLN using the indicated ca vaccine virus (B) or rHA (C) as antigens. The IgG antibody secreting B cells are presented as the
number of ASC per 106 lymphocytes.
doi:10.1371/journal.pone.0004436.g002

Table 1. Serum antibody response to influenza viruses after one and two doses of intranasal vaccine.

1st dose vaccine (Day 0) 2nd dose vaccine (Day 42) Neutralizing antibody GMT against the indicated vaccine virus antigens

6 wk post dose-1 1 wk post dose-2 3 wk post dose-2

1st Vac H5N1 H5N1 H5N1

Medium H5N1 HK03 ca ,10 ,10 40 761

H1N1 NC99 ca 50 ,10 50 403

H3N2 CA04 ca 4064 ,10 18 419

H5N1 HK03 ca 320 320 2560 2281

Medium H5N1 VN04 ca ,10 ,10 14 71

H1N1 NC99 ca 63 ,10 50 71

H5N1 VN04 ca 45 45 806 403

Groups of three ferrets were vaccinated intranasally with the indicated 1st dose of vaccine and 42 days later were inoculated with a 2nd dose of vaccine (H5N1 HK03 ca
or VN04 ca). Serum samples were collected 6 weeks after the 1st dose (pre-dose 2), 1 week and 3 weeks after the 2nd dose, respectively, and antibody titers (geometric
mean titers from 3 animals) against the first or second vaccine viruses were determined by microneutralization assay.
doi:10.1371/journal.pone.0004436.t001
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level of homologous HA-specific IgG was present (Fig. 4A). It was

noted that the H1 and H5 specific antibodies had a low level of

cross reactivity with the H5 and H1 antigens, respectively. The

level of the H5-specific ELISA antibodies was much higher in the

group that received the H1N1 NC99 ca virus as the first dose and

the H5N1 HK03 ca virus as the second dose than the ferrets that

previously received the H3N2 CA04 ca virus and those that did not

receive any virus (medium), although the titer was lower than the

ferrets that received 2 doses of the H5N1 HK03 ca vaccine

(Fig. 4B). The antibodies from the ferrets that received 2 doses of

the H5N1 HK03 ca vaccine also reacted with the rH1 HA. The

H5-specific IgG antibodies continued to increase until 3 weeks

following the 2nd dose and reached a level that was similar among

all the groups (data not shown). Similar data were also obtained for

Figure 4. HA-specific antibodies measured by an ELISA assay. Ferrets were intranasally inoculated with medium or the H1N1 NC99, H3N2
CA04, H5N1 HK03 ca vaccine viruses on day 0 and intranasally inoculated with the HK03 ca vaccine virus six weeks later. Serum samples were
collected 6 weeks after the 1st dose (A) and one week after the 2nd dose (B). ELISA was performed with RDE-treated serum using rH5, rH1 or rH3 HA
as antigens.
doi:10.1371/journal.pone.0004436.g004
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ferrets that received the H5N1 VN04 ca vaccine as a second dose

(data not shown). Thus, these data indicated that the H1- and H5-

specific binding antibodies cross-reacted with each other and

previous exposure to H1N1 vaccine appeared to result in a more

rapid H5-specific humoral immune response to the H5 HA

protein.

H1N1 vaccine-induced immunity prevented replication
of the H5N1 ca vaccine virus

To determine whether previous vaccination with the H1N1

NC99 ca vaccine would affect subsequent replication of the H5N1

ca vaccine virus in the respiratory tract, groups of six naı̈ve ferrets

were primed with the H1N1 NC99 ca, H3N2 WY03 ca, H5N1

HK03 ca vaccine or medium only. Four weeks later, animals were

inoculated intranasally with the H5N1 HK03 ca vaccine and

sacrificed on day 3 post-inoculation to collect nasal turbinates to

quantify replication of the H5N1 HK03 ca vaccine virus in the

upper respiratory tract of ferrets. As shown in Table 2, the mean

titer of the H5N1 HK03 ca vaccine virus detected in the upper

respiratory tract of ferrets that had previously received medium

was 104.5 EID50/g of tissue. In contrast, none of the ferrets that

were primed with the H1N1 NC99 ca or the H5N1 HK03 ca

vaccine had detectable virus in the upper respiratory tract. The

H3N2 WY03 ca vaccine priming protected 2 of 6 ferrets and the

H5N1 HK03 virus replicated to a mean titer of 102.2 EID50/g of

tissue in this group of ferrets. These results indicated that

heterosubtypic immunity from H1N1 ca virus infection or

vaccination reduced H5N1 ca vaccine virus replication.

Discussion

In this study, we demonstrate that live attenuated H5N1 vaccine

induced immunity can be detected by the B cell ELISpot assay.

The protective level of ASC is not well established yet, however,

the B cell response to the H5N1 HK03 ca vaccine is greater than to

the VN04 ca vaccine and the magnitude of the ASC response

correlates with serum antibody level as determined by micro-

neutralization assay. The H5N1 HK03 and VN04 viruses differ by

9 amino acids in the HA molecule and the amino acid at position

223 is known to contribute to receptor binding specificity [29].

The HA of the HK03 virus that preferentially binds to sialic acid

receptors with a2,6-linked oligosaccharide linkages contains serine

at residue 223 and the HA of the VN04 virus that prefers an avian-

like receptor with a2,3-linked oligosaccharide linkages contains

asparagine at this residue [30,31]. In addition, the length of the

NA of the H5N1 HK03 virus differs from the VN04 virus; the

VN04 virus, like most of the H5N1 isolates, has a deletion of 20

amino acids in the NA stalk whereas the HK03 virus does not have

this deletion. The differences in the HA and NA sequences

between the H5N1 HK03 and VN04 viruses presumably

contribute to the observed difference in vaccine immunogenicity.

Despite the lower immune response induced by VN04 ca virus,

two doses of the H5N1 VN04 ca vaccine offered complete

protection against homologous and heterologous H5N1 wt virus

lethal challenge in mice and provided protection against

replication of the H5N1 wt virus in the respiratory tracts of mice

and ferrets [7].

In addition to the local draining lymph nodes (TLN), ASC were

also detected in the PBMC of the vaccinated ferrets at a level

slightly lower than those detected in TLN, therefore, only the data

obtained with TLN are presented. Virus-specific memory B cells

in the lungs can persist for a long time along with germinal center

B cells and plasma cells and appear to be a unique feature of the

mucosal memory response [16]. In response to re-encountered

antigens, memory B cells robustly secrete antibodies against the

pathogen and this memory response is much faster than that of

primary B cells due to quantitative and qualitative changes in

antigen-specific B cells and helper T cells. In this study, we found

that previous exposure to the H1N1 ca virus could accelerate the

memory B cell response to the H5N1 virus. The heterosubtypic

antibody response as detected by ELISA in the serum could

prevent replication of the H5N1 HK03 ca vaccine virus in the

respiratory tract, suggesting that protective immunity was

enhanced by a priming dose of H1N1 ca vaccine. A recent study

also showed that the ferrets immunized with the H1N1 virus-like

particles (VLP) had a low level of neutralizing antibody against the

H5N1 virus and cleared the H5N1 challenge virus rapidly and had

reduced morbidity [32]. There was a concern that heterosubtypic

immunity might reduce vaccine efficacy by reducing vaccine virus

replication in the upper respiratory tract. However, despite

restricted replication of the H5N1 ca virus in the upper respiratory

tract of the H1N1 exposed ferrets, the level of H5N1-specific

neutralizing antibodies in the animals that previously received the

H1N1 ca vaccine was similar to the seronegative animals. Our

previous study indicated that two doses of the H1N1 A/New

Caledonia/20/99 ca virus were unable to protect ferrets from

replication of a high dose (107 TCID50) of H5N1 HK97 wt virus in

the respiratory tracts of ferrets [7]. However, it remains to be

determined whether the H1N1 ca virus could offer a protective

benefit from a lower challenge dose of H5N1 wt virus. Despite the

faster onset of immunity to the H5N1 ca vaccine, the antibodies

produced in animals that received the H1N1 ca vaccine followed

by the H5N1 ca vaccine are at least 5-fold lower that the animals

that received two doses of the H5N1 ca vaccines. Thus, it is likely

that the immunity provided by previous immunization with an

H1N1 ca virus is limited and priming with seasonal LAIV cannot

replace the use of 2 doses of an H5-specific vaccine.

Table 2. Effect of the H1N1 and H3N2 ca vaccines on replication of the H5N1 HK03 ca virus in the upper respiratory tract of ferrets.

Vaccine
# of animals
per group

GMT of homologous
HAI antibody

# of Animals with H5N1
detected in NT

Mean Virus Titer in NT
(log10EID50/g6SE)

Medium 6 ,4 6 4.560.5

H1N1 NC99 ca 6 47 0 #1.5

H3N2 WY03 ca 6 203 4 2.260.7

H5N1 HK03 ca 6 40 0 #1.5

Groups of ferrets were vaccinated with the indicated virus and four weeks later inoculated with the H5N1 HK03 ca vaccine. Antibody titers against homologous vaccine
virus were determined by HAI assay and expressed as geometric mean titer. The H5N1 HK03 ca virus titer in nasal turbinates (NT) on day 3 post-inoculation is expressed
as log10EID50 per gram of tissues calculated from the mean of 6 animals.
doi:10.1371/journal.pone.0004436.t002
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It has been observed frequently that individuals recovered from

influenza virus infection are protected against subsequent infection

by antigenic drift variant viruses within the same subtype

[10,11,12] and to a lesser extent from infection by a different

subtype due to heterosubtypic immunity [13]. Recently, several

reports have described heterosubtypic immunity from seasonal

influenza vaccines to H5N1 infection in mice and humans

[8,14,15,16]. Ichinohe et al [14] showed that intranasal inocula-

tion of an inactivated trivalent seasonal influenza vaccine provided

cross-protection against H5N1 infection in mice. Such studies are

difficult to conduct in humans. Ferrets develop symptoms upon

influenza infection that resemble those of humans including

sneezing, body temperature variation and weight loss and have

been shown to be an appropriate model for influenza virus

research. In this study, we demonstrated that the faster H5N1 B

cell response induced by the H1N1 ca vaccine in ferrets was

mediated by the H1 HA protein as demonstrated by a similar

effect caused by an H1N2 virus. Although the accelerated H5N1

response following previous exposure to the H1N1 ca virus was

barely detected by HAI and microneutralization assays, we found

a temporal rise of mincroneutralizing antibody in H5N1 VN04 ca

vaccinated ferrets that were previously exposed to the H1N1

NC04 ca virus (Table 1). We could demonstrate cross-reactivity of

H1N1 and H5N1 ca vaccine induced HA antibodies by ELISA

assay. These data confirmed that the H1 and H5 HA contain

some conserved epitopes that could elicit cross-reactive antibodies

[19,33] because of their structure similarity [18].

N1 NA-induced protection against experimental H5N1 virus

infection has been reported in mice and by the finding that human

sera are capable of inhibiting the NA enzymatic activity of the

H5N1 VN04 virus [17]. Our study was not designed to examine

the contribution of the N1 protein of the H1N1 virus to H5N1

immunity. We cannot exclude the possibility that the N1-induced

immunity might also contribute to the restricted replication of the

H5N1 ca virus in the upper respiratory tract of ferrets.

Our current study indicates that previous exposure to the H3N2

ca virus was less protective than the H1N1 ca virus in restricting

replication of the H5N1 ca vaccine virus in the upper respiratory

tract of ferrets. However, replication of the H5N1 vaccine virus in

ferrets previously primed with an H3N2 ca virus was also greatly

reduced compared to the control animals. This could be because

the H1N1, H3N2 and H5N1 ca vaccine viruses share 6 internal

protein gene segments. As shown by the ELISpot assay, the

number of ASC against the vaccine virus was much higher than

HA-specific ASC (compare Fig. 2B with Fig. 2C). In addition to

the protective immune response against the HA and NA surface

proteins, influenza viruses also induce immune responses against

conserved viral proteins such as NP and M1 that could result in

heterosubtypic protection [34] to restrict H5N1 virus replication.

An earlier report [35] showed that previous mucosal delivery of

trivalent influenza vaccine offered protection against H5N1 wt

virus lethal infection in the mouse model. We also showed

previously that H2N2 AA ca vaccinated mice were partially

protected from the lethal challenge of the H5N1 wt viruses [7].

This type of heterosubtypic response could be mediated by

secondary CTL responses involving CD8+ or CD4+ T cells as

reported previously [15,36].

In summary, our study supports the notion that previous

vaccination with seasonal influenza vaccine may accelerate onset

of immunity by an H5N1 ca vaccine. Since the influenza pandemic

vaccine may not be available until some time well into the first

wave or early in the second wave of a pandemic, an earlier

response may be of value in pandemic preparedness.
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