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Abstract
Objective—Hypoglycemia is associated with a variety of adverse behaviors including fatigue,
confusion and social withdrawal. While these clinical symptoms are well characterized, the
mechanism of their cause is not understood. Here we investigated how insulin-induced hypoglycemia
causes social withdrawal.

Research Design and Methods—Male 8-12-wk-old C57BL/6J mice were injected
intraperitoneally (IP) with or without and/or insulin, norepinephrine (NE) and epinephrine (Epi),
terbutaline and butoxamine with subsequent measurement of blood glucose, social withdrawal and
plasma catecholamines.

Results—Insulin generated (0.75 h post injection) significant hypoglycemia with blood glucose
nadirs of 64 ± 4 and 48 ± 5 mg/dl for 0.8 and 1.2 units/kg of insulin, respectively. Insulin (0.8 or 1.2
units/kg) caused near total social withdrawal at 0.75 h with full recovery not occurring until 4 h (0.8
units/kg) or 8 h (1.2 units/kg) post insulin injection. Insulin also caused a marked elevation in plasma
catecholamines. Basal 12 h fasting norepinephrine (NE) and epinephrine (Epi) were 287 ± 38 pg/ml
and 350 ± 47 pg/ml, respectively. Insulin at 0.8 units/kg increased plasma NE and Epi to 994 ± 73
pg/ml and 1842 ± 473 pg/ml, respectively. Administration of exogenous NE or Epi caused social
withdrawal similar in magnitude to insulin. Importantly, administration of the beta-2 adrenergic
receptor agonist terbutaline also caused social withdrawal while administration of the beta-2
adrenergic receptor antagonist butoxamine blocked NE-induced social withdrawal. Finally,
butoxamine blocked insulin-induced social withdrawal.

Conclusions—These data demonstrate that hypoglycemia-associated social withdrawal is
dependent on catecholamines via a beta-2 receptor-mediated pathway.
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Introduction
Hypoglycemia (defined as blood glucose less than 60 mg/dl) is the most common complication
of type 1 diabetes in childhood (Daneman, 2006; Shalitin and Phillip, 2007). It occurs when
the administered dose of insulin exceeds the insulin requirement and is especially common in
tightly controlled patients (Shalitin and Phillip, 2007). Symptoms of hypoglycemia may be
adrenergic in origin due to epinephrine release or related to neuroglycopenia (Service, 1995;
Hoffman et al., 1997; Korytkowski et al. 1998; Ste Marie and Palmiter, 2003; Hoffman,
2007). The adrenergic symptoms include: tremor, pallor, rapid heart rate, palpitations and
diaphoresis (Binder and Bendtson, 1992; Bolli, 1997; Korytkowski et al., 1998).
Neuroglycopenic symptoms range from fatigue, lethargy, headache, drowsiness and behavior
change to seizures, unconsciousness and coma (Binder and Bendtson, 1992; Hoffman, 2007).
Symptoms of hypoglycemia are classified as mild, moderate or severe (Hoffman, 2007). Mild
hypoglycemia is associated with adrenergic symptoms and mild neuroglycopenic symptoms
such as headache and behavior change (Frier, 2004; Hoffman, 2007). In addition, mild
symptoms are generally recognized by the patient, oneself, and can be adequately treated
without the intervention of a second person (Frier, 2004). Moderate and severe cases require
second person assistance (Davis et al., 1998; Frier, 2004).

The brain is highly glucose dependent, but it can neither synthesize glucose nor store significant
amounts of it (Delamater, 2006; Rao et al., 2006). With the more frequent use of intensive
therapies for T1D, symptomatic hypoglycemia has increased in incidence with more than 17%
of individuals noting a hypoglycemic episode during a years treatment time (Feingold, 1991).
Severe hypoglycemia, particularly that presenting with seizure or coma, may result in
permanent impairment especially in children less than five years of age (Cryer, 2008). In
addition, repeated episodes of hypoglycemia can negatively impact brain development and
learning (Cryer, 2008). Even isolated acute episodes of mild hypoglycemia can transiently
impair attention, mentation and memory (Northam et al., 2001).

T1D is, also, linked to an increase in mental health and mood difficulties including anxiety
(McAulay et al., 2006), depression (Hislop et al., 2008) and social withdrawal (Delamater,
2006). Withdrawn children are anxious, lonely, fail to exhibit age-appropriate interpersonal
problem-solving skills and are deficient in social skills and social relationships (Silverstein et
al., 2005). In 2000, the International Society of Pediatric and Adolescent Diabetes (ISPAD)
Consensus Guidelines stated that “Psychosocial factors are the most important influences
affecting the care and management of diabetes” and these recommendations were reiterated in
the 2006/2007 ISPAD guidelines (Delamater, 2007). Unfortunately, very little is known about
how T1D causes neurocognitive, psychosocial and behavioral difficulties and how they are
regulated in the body either chronically or acutely. Therefore, we sought to investigate the
acute mechanism by which insulin-induced hypoglycemia causes the adverse behavior of social
withdrawal using a mouse model.

Materials and Methods
Materials

All reagents and chemicals were purchased from Sigma-Aldrich (St. Louis, MO) except for
Humalin R (insulin), which was purchased from Eli Lilly (Indianapolis, IN).

Animals
All animal care and use was conducted in accordance with the Guide for the Care and Use of
Laboratory Animals (National Research Council). C57BL/6J mice were bred in-house from
mice purchased from The Jackson Laboratory. Mice were group housed (4-8) in standard
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shoebox cages (17.15 × 28 cm) in a temperature (23°C) and humidity (45–55%) controlled
environment with a 12-h/12-h dark-light cycle (0800 h to 2000 h). Mice were fed pelleted food
(NIH 5K52; LabDiet; Purina Mills) and water ad libitum. Male 8- to 12-wk-old animals were
used for all experiments. Animals were administered Epi, NE, and insulin at the indicated
concentrations via IP injection. Butoxamine and terbutaline were administered IP at 5 mg/kg/
mouse.

Blood glucose
Blood was collected from the tail blood as we described previously (Hartman et al., 2004).
Briefly, blood glucose levels were measured using a One Touch Ultra glucometer (Johnson &
Johnson) per the manufacturer's instructions. In brief, mice were placed in a very shallow
shoebox sized container (17.15 × 28 × 4 cm) such that the tail was exposed. The tip of the tail
was then secured against the top of the container, snipped and blood drawn. Blood glucose was
measured on the same mice utilized in the social withdrawal experiments.

Social withdrawal
Social withdrawal was measured as described (Hartman et al., 2004). In brief, juvenile and
adult mice were individually housed for 18 h prior to experimentation. A novel 3- to 4-week-
old conspecific juvenile mouse (challenge mouse) was then confined to a 7.62 × 7.62 cm wire
mesh enclosure (with a perforated steel top and bottom) which was placed in the corner of the
home cage of the adult mouse (test mouse) for 5 min immediately prior to and at the indicated
times after treatment (n=3∼4). A novel juvenile was supplied for each interaction at every time
point. Interaction (nose contact) between test and challenge mouse was video-recorded. Time
spent by the test mouse in exploratory behavior was determined from video records. To control
for mouse-to-mouse variability in baseline activity and to allow comparison of relative changes
in exploration levels, a pre-exposure (0 h) measurement was used as an internal control for
each mouse. Results are expressed as percentage of baseline measurement and shown as means
± SEM. For all behavior experiments, mice were fasted for 12 h then pre-injected IP (where
indicated) with the described agonist, antagonist or saline 0.5 h prior to IP insulin or IP saline
administration, Unrestricted access to food was provided 0.75 h after agonist or insulin
administration. Social exploration was measured at the time points indicated with the clock
starting after insulin delivery. In experiments without insulin, the starting point was after
agonist or saline delivery. All experiments were performed under red light, during the dark
cycle 1 h into darkness.

Movement
Movement was measured in a four arm, black, Plexiglas cross maze (arms = 27.5 cm in length
× 8cm in width × 10 cm wall height: central platform = 8 cm × 8 cm) by methods previously
described (Ragozzino, 1998). In brief, mice were placed on the center platform at the times
indicated. Movement, as assessed by arm entries, was recorded over a 5 min period (from video
records). The mouse was required to have all four legs in the arm for an arm entry to have
occurred.

Plasma catecholamine analysis
After the indicated treatments, mice were anesthetized with sodium ketamine
hydrochloride:xylazine hydrochloride (80 mg/ml:12 mg/ml, ketamine:xylazine) at 1.5 ml/kg
body weight and blood removed from the left ventricle. Blood was collected into chilled
heparinized centrifuge tubes and spun at 9300 × G for 8 min. Plasma was aspirated and stored
at -80° C. Catecholamines were determined from plasma by reverse-phase high performance
liquid chromatography (HPLC). Solid phase extraction was with aluminum oxide
(Bioanalytical Systems, West Lafayette, IN) and elution was in 0.2 N perchloric acid.
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Dihydroxybenzylamine was used as an internal standard to determine extraction efficiency.
Electrochemical detection (ESA, Chelmsford, MA) utilized a 150 × 2 mm C18 (3 μm) Hypersil
column (Keystone Scientific, Bellfonte, PA) fitted with a 2 mm C18 (3 μm) Hypersil javelin
guard column (Keystone Scientific). Mobile phase (pH = 3.0) was 75 mM NaH2PO4, 1.7 mM
1-ocatanesulfonic acid, 25 μM Na2EDTA, 7% (vol/vol) acetonitrile, and 0.1% (vol/vol)
triethylamine. The interassay coefficient of variation was less than 3%.

Statistical Analysis
Data are presented as mean ± SEM and were analyzed by two- or three-way ANOVA depending
on the experimental design with repeated measurements in the time factor as applicable. Post
hoc comparisons of individual group means were carried out with the Tukey test (SAS Institute,
Cary, NC). Statistical significance was denoted at P < 0.05.

Results
Insulin induced hypoglycemia is associated with social withdrawal

Table 1 demonstrates that when C57BL/6J mice were withheld food for 12 h blood glucose
ranged from 117 ± 6 to 131 ± 11 mg/dl When mice were injected IP with insulin blood glucose
fell. Blood glucose 0.75 h after 0.4, 0.8 or 1.2 units/kg of insulin was 99 ± 14 mg/dl (p = 0.029),
64 ± 4 mg/dl (p = 0.001) or 48 ± 5 mg/dl (p = 0.0008), respectively compared to control (151
± 13 mg/dl). Food was made accessible to the mice 0.75 h post injection. At 8 h post insulin
injection and 7.25 h post return to unrestricted food access, blood glucose ranged from 189 ±
17 to 200 ± 6 mg/dl in insulin treated and control animals. Fig.1 shows the impact of insulin
administration on social exploration. At 0.75 h after IP insulin injection, social withdrawal was
nearly complete in mice treated with 0.8 and 1.2 units/kg insulin demonstrating a 91 ± 11% (p
= 0.0001) and 96 ± 5% (p = 0.0001) loss in social exploration. Insulin delivered at 0.4 units/
kg did not impact social exploration. In addition, recovery from insulin-induced social
withdrawal took 4 and 8 h to recovery from after 0.8 and 1.2 units/kg insulin, respectively.
Finally, arm entries into a plus maze were examined to assess mouse mobility after
administration of 0.8 units/kg insulin. As with social withdrawal, 0.75 h after insulin injection,
arm entries in insulin-treated mice were reduced {44 ± 10 vs 14 ± 4 (p = 0.038)}. After 3 h
(for arm entries), insulin-treated mice had fully recovered. Taken together these findings
indicate that insulin-induced hypoglycemia is associated with social withdrawal and loss of
movement.

Catecholamines cause social withdrawal
Fig.2 demonstrates that 0.8 units/kg insulin IP induced a marked elevation in plasma NE and
Epi. At 0.75 h after insulin, NE was increased compared to control, 994 ± 73 pg/ml vs 439 ±
50 pg/ml (p = 0.001). At 120 min after insulin, NE returned to near control levels, 994 ± 73
pg/ml vs 351 ± 54 pg/ml (p = 0.052). After insulin (0.75 h), Epi increased to 2184 ± 833 pg/
ml vs 390 ± 11 pg/ml (p = 0.089) and was significantly elevated at 120 min post insulin, 1842
± 472 pg/ml vs 351 ± 144 pg/ml (p = 0.01). To determine the impact of catecholamines on
social withdrawal, social exploration was examined. Fig.2B shows that when NE was
administered IP at 1.0, 1.5 or 2.0 mg/kg social exploration was significantly curtailed 0.5 h
after injection {63 ± 5% (p = 0.009), 38 ± 9% (p < 0.001) or 19 ± 3% (p < 0.001), respectively}.
Recovery from NE-induced social withdrawal occurred at 2 h for NE at 1.0 mg/kg and at 4 h
for NE at 1.5 and 2 mg/kg. Fig.2C demonstrates that Epi was a more potent inducer of social
withdrawal. At 0.25, 1.0 and 1.5 mg/kg, Epi caused social exploration to fall to 44 ± 4% (p =
0.0002), 27 ± 3% (p < 0.0001) and 24 ± 2% (p < 0.0001) of control, respectively, 0.5 h after
administration. Recovery occurred in 2, 4 and 12 h after 0.25, 1.0 and 1.5 mg/kg Epi,
respectively. Taken together these findings indicate that catecholamines cause social
withdrawal.
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Beta-2 adrenergic receptor stimulation causes social withdrawal which beta-2 adrenergic
receptor antagonism prevents

To determine if catecholamine dependent social withdrawal was mediated by the beta-2
adrenergic receptor, beta-2 agonism was performed using the beta-2 agonist terbutaline
(Podojil et al., 2004; Ito et al., 2006; Thaker et al., 2006). Fig.3A shows that when terbutaline
was administered IP at 5.0 mg/kg social withdrawal occurred similar to that seen with 1.5 mg/
kg NE (30 ± 3% vs. 35 ± 7% at 0.5 h), (43 ± 11% vs. 51 ± 14% at 2 h), (67 ± 7% vs. 80 ± 1%
at 4 h). Importantly, when the beta-2 antagonist butoxamine (Kaan et al., 1996; Junker et al.,
2002) was administered IP at 5.0 mg/kg to mice just prior to NE injection (1.5 mg/kg), NE-
dependent social withdrawal was completely blocked. Taken together these findings indicate
that catecholamine-dependent social withdrawal is mediated by the beta-2 adrenergic receptor.

Butoxamine blocks insulin-induced social withdrawal
Table 2 demonstrates that when C57BL/6J mice were withheld food for 12 h blood glucose
ranged from 137 ± 15 to 149 ± 17 mg/dl. When mice were injected IP with insulin (0.8 units/
kg) or insulin (0.8 units/kg) + butoxamine (5 mg/kg) blood glucose fell to 67 ± 4 mg/dl (p <
0.0001) or 78 ± 6 mg/dl (p = 0.0004), respectively compared to control (150 ± 10 mg/dl). At
8 h post insulin injection and 7.25 h post return to unrestricted food access, blood glucose
ranged from 202 ± 13 to 231 ± 7 mg/dl in insulin treated and control animals. Butoxamine does
not alter the hypoglycemic response to insulin. Fig.4A shows the impact of butoxamine
administration on social exploration. At 0.75 h after IP insulin injection, social withdrawal was
nearly complete demonstrating a 96 ± 6% (p = 0.0007) loss in social exploration. Importantly,
butoxamine completely blocked the effect of insulin-induced hypoglycemia on social
withdrawal while the pan-alpha blocker phentoloamine and beta-1 specific antagonist
metoprolol did not (Fig.4B). Taken together these findings indicate that insulin-induced
hypoglycemia-dependent social withdrawal is mediated by the beta-2 adrenergic receptor.

Discussion
We have previously shown that in mouse models of T1D and type 2 diabetes (T2D) social
withdrawal induced by innate immune activation is exaggerated and prolonged (Lin et al.,
2007). In diabetic mice administered the toll-like receptor 4 (TLR-4) agonist
lipopolysaccharide (LPS), prolonged immune-activated social withdrawal appeared dependent
on hyperglycemia (Lin et al., 2007). This is likely due to the impact of hyperglycemia on
macrophages because hyperglycemia augments LPS-induced pro-inflammatory cytokine
production by macrophages via a pathway requiring p38 map kinase (Sherry et al., 2007). In
general, social withdrawal as part of classical sickness symptoms is caused by innate immune
activation (Dantzer, 2004) and is dependent on pro-inflammatory cytokines, especially TNF
alpha and IL-1 beta, and their impact in the brain (Dantzer et al., 2008).

As we show and report in the results for Fig.1, insulin-induced hypoglycemia causes social
withdrawal and reduced mouse movement. When insulin is administered at 1.2 units/kg, blood
glucose nadirs at 48 mg/dl (Table 1) 0.75 h after insulin injection, which corresponds with
nearly complete social withdrawal. Interestingly, hypoglycemia-associated social withdrawal
took 8 h to fully recovery from indicating a significant behavioral impact of hypoglycemia
extending well beyond the acute event. This phenomenon should not be surprising because
hypoglycemia triggers a variety of bioactive compounds that raise blood glucose. These include
catecholamines, glucagon, growth hormone and cortisol. Metabolically, these agents stimulate
glucose production initially through glycogenolysis and then later through gluconeogenesis,
decreased muscle glucose storage/oxidation and use of alternative fuels (Hoffman, 2007).
Catecholamines, especially, are key to the early glucose rise in T1D because disease-based
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loss of pancreatic islet cells also disrupts the ability of the pancreas to produce glucagons
(Brown et al., 2008).

Insulin-induced hypoglycemia was also associated with decreased mouse movement as
measured by arm entries in a cross maze. When examined as a percent (at 0.8 units/kg insulin),
loss of social exploration (at 0.75 h) was greater (91%) than loss of movement (68%). Indicating
that loss of social exploration may not just be due to a simple loss of activity. In general, severe
insulin-induced hypoglycemia lowers brain ATP stores that can take up to 3 h to fully recovery,
if the hypoglycemia is serious enough to cause coma as documented by EEG (Agardh and
Rosen, 1983). When insulin was used to drop blood glucose in humans with diabetes from
∼180 mg/dl to ∼40 mg/dl in a time span of 1 h, adrenergic symptoms as measured by pulse
returned to normal 1 h after the pulse peaked at 1 h post insulin administration. (Deacon et al.,
1977). Unfortunately, in both animals and humans, little has been reported regarding
recuperation from insulin-induced hypoglycemia and almost nothing is known about recovery
from adverse behaviors associated with insulin-induced hypoglycemia. Most work has focused
on how to effectively and rapidly restore blood glucose and other metabolic indicators of
hypoglycemia and correlating return of these biomarkers to normal as resolution (Pratley and
Salsali, 2007). Only in severe coma-inducing hypoglycemia does the brain tend to be examined,
but in these studies behavior and behavioral recovery is ignored.

Gold et al (Gold et al., 1995; Gold et al., 1997) has examined and reviewed the non-cognitive
impact of insulin-induced hypoglycemia. In non-diabetic participants, they found that
hypoglycemia caused mood changes including a reduction in hedonic tone and energetic
arousal and an increase in tense arousal. They also noted that tense-tiredness persisted for at
least 30 min after restoration of euglycemia (Gold et al., 1993). Tense-tiredness may be of
particular relevance to T1D in that it is a mood where fatigue is mixed with nervousness, tension
or anxiety and often underlies depression. (Westfall and Westfall, 2005; Lustman and Clouse,
2007). It is important to note that social withdrawal is a component of these behaviors including
tense arousal, fatigue and anxiety (Westfall and Westfall, 2005). In addition, there may be a
stratification of hypoglycemia-associated behaviors because we found that peak social
withdrawal was more severe than peak loss of movement.

Another question Fig.1 poses is whether insulin, itself, not insulin-induced hypoglycemia
causes the social withdrawal observed. Gold et al found that the mood disturbances they
observed occurred in the insulin-induced hypoglycemia subjects and not those exposed to
hyperinsulinemic glucose clamp (Martelli et al., 1995). In addition, we have shown that in a
mouse model of T1D insulin does not induce social withdrawal, but appears to improve social
exploration in hyperglycemic mice especially if insulin is administered ICV (Lin et al.,
2007). We have also shown that in non-diabetic and T2D mice that IGF-I does not impact
baseline social exploration (Johnson et al., 2005).

Fig.2A demonstrates that the insulin dose administered was significant enough to up-regulate
plasma NE and Epi. These findings indicated that NE or Epi might be responsible for the social
withdrawal seen with insulin-induced hypoglycemia. As Fig.2B and C show, NE and Epi both
cause social withdrawal. Interestingly, Epi appears to be a more potent inducer of social
withdrawal being able to cause social withdrawal at one quarter the dose of NE. In addition,
the impact of Epi on social withdrawal was significantly longer lasting when both were
administered at 1.5 mg/kg. Fig.3 shows that the beta-2 adrenergic receptor agonist terbutaline
induces social withdrawal and that the beta-2 receptor agonist butoxamine completely blocks
NE-induced social exploration. Importantly, butoxamine did not raise blood glucose in
response to insulin (Table 2) suggesting that insulin-induced social withdrawal is not mediated
directly by hypoglycemia but by the impact that hypoglycemia has on catecholamines.
Together these findings point to beta-2 adrenergic stimulation as key to catecholamine-
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dependent social withdrawal. Critically, the beta-2 antagonist butoxamine blocked insulin-
induced social withdrawal (Fig.4A) while the pan-alpha blocker, phentolamine, and the beta-1
blocker, metoprolol, did not. (Fig.4B). These findings strongly support our contention than
hypoglycemia-associated social withdrawal induced by insulin is dependent on catecholamines
via a beta-2 receptor-mediated pathway. While these finding do not exclude glucagon and/or
cortisol/corticosterone as modulators of behavior in insulin-induced hypoglycemia, with
regard to social withdrawal, catecholamines appear paramount.

A key question is how NE/Epi cause social withdrawal. Both NE and Epi (as well as terbutaline)
are rather polar compounds that do not readily enter the CNS (Westfall and Westfall, 2005).
In general, Epi may cause restlessness and apprehension but these feelings in humans are
usually ascribed to the effect of Epi on the cardiovascular system, skeletal muscle and/or
intermediary metabolism (Westfall and Westfall, 2005). NE is less commonly linked to
restlessness and apprehension than Epi (Westfall and Westfall, 2005) and, like Epi, NE is
rapidly inactivated by the same enzymes that methylate and oxidatively deaminate Epi
(Westfall and Westfall, 2005). In our study, the apparent reason Epi is a more potent inducer
of social withdrawal than NE is that Epi is a more effective beta-2 adrenergic agonist than NE
(Westfall and Westfall, 2005). Support for this contention is that the beta-2 selective adrenergic
agonist terbutaline caused social withdrawal and, in general, beta-2 agonists are more likely
to induce feelings of restlessness, apprehension, and anxiety (Westfall and Westfall, 2005).
Importantly, these behaviors are linked in certain instances to social withdrawal (Westfall and
Westfall, 2005). The probable mechanism by which beta-2 adrenergic stimulation causes social
withdrawal either due to adrenergic agents or insulin-induced hypoglycemia and subsequent
catecholamine up-regulation is through “stress”-induced hypothalamic NE turnover (Weiss et
al., 1975; Anisman and Sklar, 1979) because NE turnover induces social withdrawal in
immune-based sickness models (Marvel et al., 2004). Finally, what causes glucoprivic
triggering of noradrenergic neurons in the ventromedial hypothalamus is not clear (Levin,
2007), but nearly one-third of young adults with T1D experience psychological distress and
this distress appears linked to hypoglycemia especially in those attempting tighter glucose
control with subcutaneous insulin infusion (Hislop, 2008). Therefore, the importance of
understanding the adverse impact of hypoglycemia on behavior is significant.
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Fig.1. Insulin induces social withdrawal
After a 12 h fast, C57BL/6J mice were administered either insulin (Insulin) or saline control
(Saline) IP as indicated. Social exploration was measured at 0, 0.75, 2, 4, and 8 h after insulin
delivery. Unrestricted access to food was provided after the 0.75 time point. Results are
expressed as percentages of the baseline measurement, means ± SEM; n=3, *P <0.05, **P
<0.001 Insulin vs. Saline.
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Fig.2. Catecholamines cause social withdrawal
(A) After a 12 h fast, C57BL/6J mice were administered either insulin (Insulin) or saline control
(Saline) at 0.8 units/kg insulin IP as indicated. Plasma catecholamines were measured by HPLC
at 0, 45 and 120 min post insulin injection. Results are expressed as mean ± SEM; n = 3, *P
<0.01, **P <0.001 Insulin vs. Saline. (B) Mice were administered NE (IP) at the concentrations
indicated. Social exploration was measured at 0, 0.5, 2, 4, 8 and 12 h after NE delivery. Results
are expressed as percentages of the baseline measurement, means ± SEM; n=4. *P<0.01, **P
< 0.0001, NE vs. Saline. (C) Mice were administered Epi (IP) at the concentrations indicated.
Social exploration was measured at 0, 0.5, 2, 4, 8 and 12 h after Epi delivery. Results are
expressed as percentages of the baseline measurement, means ± SEM; n=4, *P<0.01, **P <
0.0001, Epi vs. Saline.
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Fig.3. Beta-2 adrenergic receptor stimulation causes social withdrawal which beta-2 adrenergic
receptor antagonism prevents
(A) C57BL/6J mice were IP administered NE, terbutaline (Terb) or saline control (Saline) at
the concentrations indicated. Social exploration was measured at 0, 0.5, 2, 4, 8 and 12 h after
injection. Results are expressed as percentages of the baseline measurement, means ± SEM;
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n=3, *P<0.01, **P < 0.0001, NE or Terb vs. Saline. (B) Mice were IP administered NE,
butoxamine (Butoxamine) or Saline at the concentrations indicated. Social exploration was
measured at 0, 0.5, 2, 4, 8 and 12 h after injection. Results are expressed as percentages of the
baseline measurement, means ± SEM; n=3, *P < 0.05, **P < 0.0001, NE vs. butoxamine +
NE.
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Fig.4. Butoxamine blocks insulin-induced social withdrawal
A, After a 12 h fast, C57BL/6J mice were pretreated with or without butoxamine (BTX) (5 mg/
kg, IP) as indicated. Mice were then administered insulin (Ins) (0.8 units/kg, IP or saline control
(Saline) IP as indicated. Social exploration was measured at 0, 0.75, 2, 4, and 8 h after insulin
delivery. Unrestricted access to food was provided after the 0.75 time point. Results are
expressed as percentages of the baseline measurement, means ± SEM; n=3, *P < 0.0001, **P
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= 0.0007 Insulin vs Insulin + butoxamine. B, Like in A, C57BL/6J mice were pretreated with
either phentolamine (Phen) (1 mg/kg, IP) or metoprolol (Meto) (10 mg/kg, IP), as indicated.
Mice were then administered insulin (0.8 units/kg) or saline control IP. Social exploration was
measured as in A. Results are expressed as percentages of the baseline measurement means ±
SEM; n=4-6, *p=0.0126 **p=0.0018 ***p<0.0001 Saline vs. Insulin +/- Phen or Meto.
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Table 1
Blood Glucose (mg/dl) After Insulin Injection

Treatment 0 h 0.75 h 8 h

Saline 130 ± 11 151 ± 13 196 ± 4

Insulin 0.4 units/kg 131 ± 11 99 ± 14 * 190 ± 19

Insulin 0.8 units/kg 117 ± 6 64 ± 4 * 200 ± 6

Insulin 1.2 units/kg 124 ± 18 48 ± 5 * 189 ± 17
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Table 2
Blood Glucose (mg/dl) After Insulin And Butoxamine Injection

Treatment 0 h 0.75 h 8 h

Saline 149 ± 17 150 ± 10 226 ± 17

Butoxamine 139 ± 7 151 ± 14 202 ± 13

Insulin 137 ± 15 67 ± 4 * 224 ± 11

Ins + BTX# 142 ± 7 78 ± 6 * 231 ± 7

#
Ins = insulin, BTX = butoxamine
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