
Prognostic gene signatures for non-small-cell
lung cancer
Paul C. Boutrosa,b,1, Suzanne K. Laua,b, Melania Pintilieb, Ni Liub, Frances A. Shepherdc,d, Sandy D. Derb,e,
Ming-Sound Tsaoa,b,e, Linda Z. Penna,b, and Igor Jurisicaa,b,f,2

Departments of aMedical Biophysics, dMedicine, eLaboratory Medicine and Pathology, and fComputer Science, University of Toronto, Toronto, ON, Canada
M5S 1A1; bOntario Cancer Institute, University Health Network, Toronto, ON, Canada M5G 2M9; and cDivision of Medical Oncology, Princess Margaret
Hospital, Toronto, ON, Canada M5G 2M9

Edited by Tak Wah Mak, University of Toronto, Toronto, ON, Canada, and approved December 23, 2008 (received for review September 21, 2008)

Resectable non-small-cell lung cancer (NSCLC) patients have poor
prognosis, with 30–50% relapsing within 5 years. Current staging
criteria do not fully capture the complexity of this disease. Survival
could be improved by identification of those early-stage patients
who are most likely to benefit from adjuvant therapy. Molecular
classification by using mRNA expression profiles has led to multi-
ple, poorly overlapping signatures. We hypothesized that differing
statistical methodologies contribute to this lack of overlap. To test
this hypothesis, we analyzed our previously published quantitative
RT-PCR dataset with a semisupervised method. A 6-gene signature
was identified and validated in 4 independent public microarray
datasets that represent a range of tumor histologies and stages.
This result demonstrated that at least 2 prognostic signatures can
be derived from this single dataset. We next estimated the total
number of prognostic signatures in this dataset with a 10-million-
signature permutation study. Our 6-gene signature was among the
top 0.02% of signatures with maximum verifiability, reaffirming its
efficacy. Importantly, this analysis identified 1,789 unique signa-
tures, implying that our dataset contains >500,000 verifiable
prognostic signatures for NSCLC. This result appears to rationalize
the observed lack of overlap among reported NSCLC prognostic
signatures.

biomarkers � systems biology � mRNA quantitation � substaging

Non-small-cell lung cancer (NSCLC) is the predominant
histological type of lung cancer, accounting for up to 85%

of cases (1). Tumor stage is the best established and validated
predictor of patient survival (2). When identified at an early
stage, NSCLC is primarily treated by surgical resection, which is
potentially curative. However, 30–60% of patients with stage IB
to IIIA NSCLC die within 5 years after surgery, primarily from
tumor recurrence (3). These relapses have been postulated to
arise from a reservoir of cells beyond the resection site, such as
microscopic residual tumors at the resection margin, occult
systemic metastases, or circulating tumor cells. Such a reservoir
could potentially be eliminated with an adjuvant systemic ther-
apy, such as chemotherapy. Indeed, this type of adjuvant therapy
is routinely applied in the treatment of other solid tumors,
including breast (4) and colorectal cancer (5, 6).

Randomized clinical trials have confirmed the benefit of
adjuvant chemotherapy in stage II to IIIA NSCLC patients, but
the benefit in stage I remains controversial (7–10). However,
even in stage I the overall survival is only 70%, which suggests
that there is a subpopulation of stage I patients who have more
aggressive tumors. In theory, these patients might benefit from
postoperative adjuvant chemotherapy. In contrast, there may be
subpopulations of stage II or IIIA patients who have such good
prognoses that they may neither need nor derive benefit from
adjuvant therapy.

Several groups have attempted to identify these subpopula-
tions by studying the mRNA expression profiles of surgically
excised tumor samples by using high-density microarray plat-
forms (11–17). Other groups, including our own, have reported

smaller prognostic signatures assayed by quantitative reverse-
transcriptase PCR (RT-PCR) (18). However, the specific signa-
tures identified by these groups show minimal overlap (19), and
it is unclear why this is so. Ein-Dor and coworkers (20) dem-
onstrated that biological heterogeneity leads to thousands of
samples being required to identify robust and reproducible
subsets for most tumor types. These conclusions are supported
by the finding that thousands of genes display intratumor het-
erogeneity, likely caused by the diversity of tumor microenvi-
ronments and cell populations (21, 22). We hypothesized that
different statistical methods handle disease heterogeneity in
different ways and thus play a major role in the lack of overlap
among reported NSCLC prognostic signatures.

Results
Classifier Training. To determine the impact of alternative statis-
tical methods on prognostic marker identification, we considered
our previously published 147-patient, 158-gene RT-PCR
NSCLC dataset. This dataset had been analyzed by using high
concordance-index as a criterion, which identified a 3-gene
classifier capable of separating patients into groups with signif-
icantly different prognoses (19). The majority of signatures
developed for NSCLC used linear or risk-score methods to
classify patients (11, 13, 14, 16, 23), which are unable to capture
nonlinear interactions among genes. For example, regulatory
networks make substantial use of ‘‘or’’ logic: A cell may respond
to hypoxic conditions by up-regulating HIF1A or down-
regulating VHL. Such relationships cannot generally be captured
by linear methods. We thus developed a nonlinear semisuper-
vised method by coupling unsupervised pattern recognition to
gradient descent optimization. We call this algorithm modified
Steepest Descent, or mSD (supporting information (SI) Fig. S1).

Applying mSD to a training dataset of 147 NSCLC patients
generated a prognostic signature comprising 6 genes: syntaxin
1A (STX1A), hypoxia inducible factor 1A (HIF1A), chaperonin
containing TCP1 subunit 3 (CCT3), MHC Class II DP beta 1
(HLA-DPB1), v-maf musculoaponeurotic fibrosarcoma onco-
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gene homolog K (MAFK), and ring finger protein 5 (RNF5).
Table S1 gives additional information on these genes.

We visualized the mSD signature by using unsupervised
pattern recognition and found that the 6 genes were largely
uncorrelated (Fig. S2). The signature separated the 147 training
patients into groups with significantly different survivals (P �
2.14 � 10�8; log-rank test) (Fig. 1A). Both patient prognosis and
treatment are strongly affected by clinical stage, and our previ-
ous analysis showed it to be a significant covariate in the training
dataset (19). Accordingly, we adjusted for the effects of stage by
using Cox proportional-hazards modeling and showed that the
mSD molecular signature was independent of clinical stage (HR
4.8, P � 0.001). We also performed a preliminary validation by
using leave-one-out cross-validation (24). The 6-gene signature
divided patients into 2 groups with significantly different out-
come during cross-validation (Fig. 1B) (HR: 2.5, P � 0.0036).
The six-gene signature leads to similar patient classifications in
the training dataset as our earlier 3-gene signature (SI Text and
Table S2).

Classifier Validation. To validate our 6-gene signature, we tested
its ability to stratify patients into groups with different prognosis
by using 4 independent publicly available datasets from Duke
University (25), the University of Michigan (16), and the Prince
Charles Hospital (13, 14). These datasets represent 2 versions of
Affymetrix arrays (U133Plus2.0, Duke; U133A, Michigan) and

a custom cDNA array (Prince Charles). Two of these studies
comprise exclusively squamous cell carcinomas (13, 16), one
exclusively adenocarcinomas (14), and one both (25). Each
dataset was analyzed separately, as outlined in SI Text. The
molecular stratifications are plotted in Fig. 2. The 6-gene
signature was prognostic in all 4 independent patient cohorts,
with hazard ratios ranging from 1.4 (P � 0.08) to 3.3 (P � 0.002).
The validation on the 2 datasets from Prince Charles is notable
because 1 gene from our 6-gene signature (RNF5) and 2 of the
4 normalization genes were not present on the array platform.
Despite this missing information, the mSD signature classified
patients into groups with significantly different outcomes (Fig. 2
B and D). In the 2 Affymetrix datasets (Fig. 2 A and C), �10%
of patients had expression profiles equidistant from the 2
training clusters. These patients were not classified; in practice
these equivocal classifications would be assigned to standard
clinical practice.

Pooled Validation. In addition to the 4 datasets analyzed in Fig. 1,
a number of small or older NSCLC datasets exist. We combined
the data from the 4 validation datasets with that from a previous
study of adenocarcinomas on the older Hu6800 Affymetrix array
(11), a study of adenocarcinomas on the relatively old U95Av2
Affymetrix array (12), and small adenocarcinoma and squamous
cell carcinoma datasets on Affymetrix U133A arrays from a
pooled study (23). This procedure generated a cohort of 589
patients taken from 8 datasets. This cohort was separated into
2 groups by using the 6-gene signature (Fig. S3A). The resulting
groups showed significant stage-adjusted differences in survival
with a hazard ratio of 1.6 (95% CI 1.2–2.2; P � 7.6 � 10�4). The
6-gene signature was also capable of separating Stage I patients

Fig. 1. Classifier development. The mSD algorithm was trained on an RT-PCR
dataset of 158 genes in 147 NSCLC patients. The resulting 6-gene classifier
separated patients into 2 groups with significantly different outcomes (A).
Leave-one-out cross-validation again identified 2 groups with significantly
different outcomes (B). The number of patients at risk at each time interval in
the molecularly defined good- and poor-prognosis groups is listed below each
survival curve. The stage-adjusted hazard ratio (HR), P value (Wald test), and
number of patients classified (N) are given on each survival curve.

Fig. 2. Classifier validation. To validate the 6-gene classifier, we classified
patients from 4 independent datasets. (A) Mixed adenocarcinomas and squa-
mous cell carcinomas profiled with Affymetrix HG-U133Plus2 arrays by Potti et
al. (15). (B) Adenocarcinomas profiled on cDNA arrays by Larsen et al. (13). (C)
Squamous cell carcinomas profiled on Affymetrix HG-U133A arrays by Raponi
et al. (16). (D) Squamous cell carcinomas profiled on cDNA arrays by Larsen et
al. (14). The number of patients at risk in each molecularly-defined group is
indicated at several time points. The stage-adjusted hazard ratio (HR), P value
(Wald test), and the number of patients successfully classified (N) are also
shown.
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from this cohort into 2 groups with different survival (Fig. S3B),
with a hazard ratio of 1.5 (95% CI 1.1 to 2.2; P � 0.02). These
results for Stage I patients were adjusted for clinical stage (IA
vs. IB), demonstrating that our molecular classification improves
upon existing staging criteria. The hazard ratios in this pooled
analysis are somewhat compressed by the addition of older and
less-sensitive microarray platforms, but nevertheless the results
are statistically significant consistent in a very large patient
cohort. The extensive validation of our 6-gene signature com-
pares favorably to other published NSCLC signatures (Fig. S4).
Table S3 summarizes all validation datasets.

Permutation Analysis. This 6-gene classifier shows partial overlap
with the 3-gene classifier identified previously from the same
dataset by using risk-score methods. We questioned whether
other small prognostic signatures could be identified from this
158-gene dataset. To test this question comprehensively, we
mapped our 158 genes in 4 test datasets (11, 12, 16, 25). In total,
113 genes were common to these 4 datasets, and adding addi-
tional datasets greatly reduced this number. We restricted
subsequent analyses to the 113 genes profiled in all 4 datasets.
We then generated 10 million permutations of 6 genes and tested
their prognostic capability in these 4 datasets. For each subset,
we calculated its statistical significance by using the log-rank test,
as before.

In the training set, the mSD signature was superior to 99.999%
of the 10 million unique signatures tested, as measured by the
statistical significance of the separation between the 2 patient
groups. Although few signatures performed as well as the mSD
signature, a large number showed statistical significance. In
total, 16.4% of all 6-gene signatures were significant at P � 0.05.
This proportion is 3.28-fold greater than the 5% expected by
chance alone and reflects a statistically significant enrichment
(P � 2.2 � 10�16; proportion test).

The distribution of all 10 million 6-gene signatures is shown in
Fig. 3A as a kernel density estimate. Kernel density estimates are
an established method of estimating the probability density
function of a random variable. They can be thought of as
smoothed histograms, where the y axis reflects the likelihood of
observing the value specified by the x axis. In Fig. 3A, the x axis
indicates the �2 value from the log-rank analysis. The higher the
�2, the smaller (more significant) the P value for differential
prognoses between the 2 predicted groups. Thus, more effective
prognostic signatures lie to the right of the plot.

We next compared the validation of the mSD signature with
that of the 10 million random signatures. For each test dataset
(11, 12, 16, 25), the distribution of validation rates was again
plotted as kernel density estimates. For each kernel density
estimate in the training dataset, we marked the performance of
the 6-gene mSD signature in that dataset with an arrow (Fig. 3
B–E). The mSD signature performs well in each of the 4 datasets
but with some variability. The lower bound was the squamous-
cell-carcinoma dataset reported by Raponi et al. (16), where our
classifier was among the top 10.4% of all signatures. The upper
bound was the dataset reported by Potti and coworkers (15),
where it was among the top 0.14% of all signatures. Summary
data from all permutation analyses are presented in Table S4.
The raw permutation data are also available (www.cs.
utoronto.ca/�juris/data/PNAS08/PNAS_permutation_data.zip).

These data demonstrate the efficacy of our 6-gene signature
in 4 distinct testing datasets. Whereas our signature performed
among the top 10% of all signatures in each test dataset, it was
not the single best signature in any single dataset. Rather, its
strength is its validation in 4 independent datasets. To compare
the validation of our signature across all 4 test datasets, we
calculated its percentile ranking in each dataset and took the
product of these rankings. The resulting validation score pro-
vides a measure of the interdataset reproducibility of a signature.

Only 1,789 of the 10 million signatures tested perform better
than the mSD signature across all 4 validation datasets. Thus, the
mSD signature was superior to 99.98% of signatures tested (Fig.
3F). The small difference in performance of the mSD signature
in the training and testing datasets (99.999% vs. 99.982%)
indicates minimal over-fitting on our training dataset.

Enrichment Analysis. Having used our large permutation dataset
to rank our 6-gene prognostic signature, we next tested whether
specific genes were enriched in prognostic signatures. For each
gene, we calculated the percentage of signatures containing each
gene that were statistically significant (P � 0.05, log-rank test).
At this threshold we expect 5% of signatures to be significant by
chance alone. When we plotted the percentages for the 113 gene
set (Fig. 4A), most genes were enriched over this baseline, with
enrichment values ranging from 6.7%–43.1%. This elevation
likely reflects the enrichment of our test dataset for putative
prognostic genes (19).

To focus on specific genes, we considered the 10 most highly
enriched genes (Fig. 4B). Both genes shared by our mSD and
risk-score signatures are present on this list (STX1A, 3rd, and
HIF1A, 10th), as are 1 additional gene from the mSD signature
(CCT3, 4th) and 1 additional gene from the risk-score signature

Fig. 3. Permutation validation. Ten million 6-gene signatures were gener-
ated at random from our training dataset. The ability of each signature to
separate the training dataset into 2 groups with significantly different prog-
noses was evaluated using the log-rank test. The kernel density of the �2 values
from this log-rank test was generated (A). The x axis indicates the �2 values:
Larger values indicate a lower P value and hence a more statistically significant
separation of patient groups in the training dataset. The y axis gives the kernel
density, which reflects the probability distribution of the dataset. Higher
values indicate a larger fraction of the population, akin to a smoothed
histogram. The performance of the mSD signature is marked with an arrow.
These 10 million trained signatures were then tested in 4 independent data-
sets. Kernel density estimates, as above, are provided for each test dataset
(B–E). Each test dataset is labeled with the first author of the study. The
performance of the mSD signature is marked with an arrow. Finally, to
demonstrate the significance of the mSD signature across all 4 test datasets we
generated a validation score by multiplying the percentile rankings of each
signature in each of the 4 test datasets. Higher values thus correspond to
improved validation across all 4 datasets. The performance of the mSD signa-
ture is marked with an arrow.
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(CCR7, 4th). Genes on this list are highly effective in prognostic
signatures, independent of the other genes they are combined
with, and may therefore represent unique aspects of disease
initiation or progression. Table S5 provides the enrichment
values for all 113 genes.

Discussion
We hypothesized that the observed lack of overlap in reported
prognostic signatures for NSCLC resulted from the use of
different statistical techniques. To test this hypothesis, we
trained 2 distinctive algorithms on a single dataset to determine
if identical signatures would be found. For training, we selected
a real-time PCR dataset of 158 genes assessed in 147 patients,
which we had used previously to identify a 3-gene signature by
using linear risk-score methods (19). To provide a counterpoint
to this linear analysis, we then developed a semisupervised
algorithm by coupling unsupervised pattern-recognition and
gradient-descent algorithms. We call this new algorithm mSD.

The application of mSD to the same 147-patient training
dataset identified a 6-gene signature. This signature stratified
NSCLC patients into 2 groups with different outcomes in 4
independent public datasets (Fig. 2). These datasets included 3
different array platforms and both squamous cell carcinoma and
adenocarcinoma patients. Beyond these validation datasets, a
number of other smaller or older studies exist. We combined 4
such datasets with the 4 validation datasets to generate a cohort
of 589 patients drawn from 8 published studies. The 6-gene
signature performed well, both on the entire cohort (Fig. S3 A)
and when Stage I patients were considered separately (Fig. S3B).
This validation suggests that our signature may identify a cohort
of Stage I patients who have the potential to benefit from
adjuvant therapy. Importantly, all validations include adjust-
ments for clinical stage, indicating that our signature is inde-
pendent of traditional staging criteria, which remain the stan-
dard method for determining treatment and predicting outcome,
although other factors such as age and grade also play roles.

Clinical implementation of this 6-gene signature would be
straightforward. For each patient, RT-PCR analysis would be
performed for the 6 prognostic and 4 housekeeping genes. After
normalization, Euclidean distances will determine if the pa-
tient’s profile most resembles good or poor prognosis tumors—a
similar approach to that of 2 major breast-cancer studies (26, 27).
The 6-gene signature can be used even if some of the PCR
reactions fail or data are otherwise unavailable, as shown by
successful validation in 2 cDNA microarray datasets where 1
signature and 2 normalization genes were not present on the
array platform (13, 14).

We have validated our 6-gene signature in 8 of 11 recent
NSCLC microarray studies (Fig. S4). The 8 included studies are
themselves quite heterogeneous, with differences in both clinical
and technical covariates. Clinically, the studies had varying

patient-inclusion criteria, with some studies including patients
with only some stages (11, 23) or histologies (11–14). Techni-
cally, studies varied in the fraction of tumor sample included in
each sample, the protocols used to extract RNA, and the
microarray platforms used to assess mRNA levels. The ability of
the 6-gene signature to handle these many confounding factors
may reflect both our secondary validation design (19) and the
nonlinear nature of the mSD algorithm. The 3 omitted studies
include 1 where the raw array data has not yet been deposited
in a public database (18) and 2 where identifiers to link the
expression data to clinical covariates do not appear to have been
provided (15). This extensive validation was only possible be-
cause of the public availability of a large number of previous
studies, highlighting the benefit of earlier work in the field.

Two genes (STX1A and HIF1A) are common to both the 3-
and 6-gene signatures (19). This partial overlap led us to
hypothesize that additional small prognostic signatures could be
identified from our training dataset. To test this, we trained 10
million sets of 6 genes in our PCR dataset and tested each in 4
independent validation datasets. In both the training and testing
datasets, our 6-gene classifier is superior to 99.98% of prognostic
signatures (Fig. 3F). This technique provides a universal method
for evaluating both specific prognostic signatures and the algo-
rithms used to generate them.

These results demonstrate that a very large number of poten-
tial prognostic signatures exists. Our permutation study focused
on 113 genes that were profiled in 5 separate studies. This small
dataset can generate �2.5 billion unique 6-gene signatures. If, as
our results suggest, 0.02% of these can be verified in multiple
independent validation cohorts, then a minimum of 500,000
verifiable 6-gene prognostic signatures exist. This large number
may explain the poor genewise overlap observed in prognostic
signatures from different groups (19). It will be critical to
determine if this conclusion can be generalized to other datasets
and sizes of prognostic signature.

A detailed comparison of verifiable prognostic signatures
might reveal common features. Our initial univariate analysis
shows that some specific genes were highly enriched in statisti-
cally significant prognostic signatures (Fig. 4B). In particular,
signatures containing calcitonin-related polypeptide alpha were
statistically significant 43% of the time, implicating it in disease
etiology. Overall, 3 genes in the mSD signature were enriched in
prognostic signatures. Additional study of verifiable prognostic
signatures might reveal other such insights. For example, certain
pathways might be captured by all signatures, but represented by
a number different of genes. Gene–gene interactions could be
determined from pairs of genes co-occurring at a high frequency.

Our approach may provide a template for future studies to
develop reproducible, mRNA-based signatures for cancer and
other complex diseases. We started by using a high-quality
training dataset enriched for prognostic markers. By keeping this

Fig. 4. Prognostic genes. For each gene, we calculated the fraction of 6-gene signatures containing each gene that are statistically significant at P � 0.05 (A).
A zoom-in on the 10 most enriched genes is also shown (B). The horizontal line represents the 5% level expected by chance alone, the y axis gives the fraction
of signatures containing that gene that are significant at P � 0.05 and individual genes are on the x axis.
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dataset small, we minimized the problems of over-fitting that
arise from using thousands of genes. Next, we used a nonlinear
algorithm that dynamically learned patient groupings (i.e., a
semisupervised algorithm). Finally, we extensively validated our
results, by using cross-validation, multiple external datasets, and
permutation-type analyses. Application of this protocol to the
development of other signatures may be fruitful.

In summary, we developed a semisupervised algorithm and
used it to demonstrate that a single training dataset can yield
multiple prognostic signatures. The 6-gene signature identified
by this algorithm was validated in multiple testing datasets and
with a permutation analysis. This permutation analysis suggests
a rationale for the number and diversity of distinct NSCLC
prognostic markers identified.

Materials and Methods
Prognostic Signature Identification by mSD. To identify a subset of genes whose
mRNA expression profile is predictive of patient prognosis, we combined
feature selection by greedy forward selection with unsupervised pattern
recognition. We term this procedure mSD, and it is described in detail in SI
Text. Briefly, this iterative algorithm adds genes to an existing classifier based
on their ability to maximize the significance of a log-rank test on patient
groups identified by k-medians clustering.

Training Dataset. A previously published RT-PCR dataset of 158 genes assessed
in 147 NSCLC patients (19) was used for training. Data were normalized as
described in ref. 28. Training used the original clinical annotation; subsequent
survival analyses were performed by using updated annotations, which in-
creased patient follow-up by an average of 5.2 months (Table S2).

Cross-Validation. To estimate the generalization error of the mSD method, we
performed leave-one-out cross-validation (29). Each of the 147 patients was
classified by using clusters defined with the remaining 146 patients. Euclidean
distances were used to classify patients, and significance was assessed with a
stage-adjusted Cox proportional-hazards model.

Independent Validation Datasets. Four independent public datasets were used
for validation (13, 14, 16, 25): Details of the validation procedure are pre-
sented in the SI Text. Briefly, the normalized data were downloaded, and a
unique probe for each of the 6 genes was identified in each dataset. Median-
scaling and housekeeping gene normalization (to the geometric mean of
ACTB, BAT1, B2M, and TBP levels) was performed (28). Euclidean distances to
the training clusters were used to classify each patient. Survival differences
were assessed by using stage-adjusted Cox proportional-hazards models.

Pooled Analysis. We combined patients from the 4 validation datasets de-
scribed above with 4 older or smaller NSCLC datasets (11, 12, 23). These 589
patients were classified as described above, with Cox modeling to identify
survival differences. Details are given in SI Text.

Permutation Analysis. To determine the number of 6-gene classifiers (signa-
tures) that could be generated from our 158-gene training dataset, we
performed a permutation analysis. We tested the prognostic capability of all
10 million combinations of the 6 genes. For each combination we divided the
patients into 2 groups by using k-means clustering and calculated significance
by using log-rank analysis. The distribution of subsets with prognostic signif-
icance (�2 � 3.84 or P � 0.05) in the training dataset was visualized by using
Gaussian density plots.
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