
Identifying essential genes in Escherichia coli
from a metabolic optimization principle
Carlotta Martellia, Andrea De Martinob, Enzo Marinaric,1, Matteo Marsilid, and Isaac Pérez Castilloe
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Understanding the organization of reaction fluxes in cellular me-
tabolism from the stoichiometry and the topology of the under-
lying biochemical network is a central issue in systems biology. In
this task, it is important to devise reasonable approximation
schemes that rely on the stoichiometric data only, because full-
scale kinetic approaches are computationally affordable only for
small networks (e.g., red blood cells, �50 reactions). Methods
commonly used are based on finding the stationary flux configu-
rations that satisfy mass-balance conditions for metabolites, often
coupling them to local optimization rules (e.g., maximization of
biomass production) to reduce the size of the solution space to a
single point. Such methods have been widely applied and have
proven able to reproduce experimental findings for relatively
simple organisms in specific conditions. Here, we define and study
a constraint-based model of cellular metabolism where neither
mass balance nor flux stationarity are postulated and where the
relevant flux configurations optimize the global growth of the
system. In the case of Escherichia coli, steady flux states are
recovered as solutions, although mass-balance conditions are vi-
olated for some metabolites, implying a nonzero net production of
the latter. Such solutions furthermore turn out to provide the
correct statistics of fluxes for the bacterium E. coli in different
environments and compare well with the available experimental
evidence on individual fluxes. Conserved metabolic pools play a
key role in determining growth rate and flux variability. Finally, we
are able to connect phenomenological gene essentiality with
‘‘frozen’’ fluxes (i.e., fluxes with smaller allowed variability) in E.
coli metabolism.

fluxomics � growth � stoichiometry � conserved moieties � gene essentiality

Cellular metabolism involves a complex network of interac-
tions and cross-regulations among metabolites, proteins, and

genes. Although our knowledge of regulatory functions at the
genetic level and at the level of protein–protein interactions is
still in its infancy, the biochemical network of reactions that
describes metabolism has been characterized in detail for many
organisms (1–3). Most information about the metabolic network
is contained in the matrices B � {bi

�} and A � {ai
�} describing,

respectively, the input and output stoichiometric coefficients of
each metabolite � (ranging from 1 to P) for all of the metabolic
reactions i (1 to N). Their knowledge allows for the definition of
constraint-based models from which a prediction of metabolic
f luxes is possible (4–6). These models typically rely on a
steady-state assumption that reflects the time scale separation
between the (faster) equilibration of metabolic processes and the
(slower) dynamics of genetic regulation. Under this condition,
the concentration X� of metabolite � and the flux �i � 0 of
reaction i are constant in time and globally linked by a set of
mass-balance conditions:

dX�

dt
� �

i�1

N

�ai
� � bi

��vi � 0, @� � 1, . . . , P [1]

or, in matrix notation, (A � B)� � 0, where � � {�1,…,�N} is a
flux vector. The problem is that of finding a flux vector satisfying
the set of P linear equations (1). For real metabolic networks, the
above system is usually underdetermined because N � P [e.g.,
Escherichia coli has �1,100 reactions and �800 metabolites (1)],
so that multiple solutions exist, and one has to specify which of
these are the working, physical states of the network.

In organisms with high functional specificity or whose main
objective is to produce certain specified metabolites, like, e.g.,
red blood cells, physical states are taken to be all those consistent
with the mass-balance conditions. In such cases, it is important
to be able to explore the solution space of Eq. 1 uniformly.
Uniform sampling can be achieved in small networks with Monte
Carlo methods (7), and, more recently, message-passing algo-
rithms have been used (8, 9). However, computational consid-
erations still prevent the application of such techniques to
explore more general aspects of larger metabolic networks.

For more complex organisms, one normally complements Eq.
1 with the assumption that the physical state of the network
obeys a specific optimization principle. In flux-balance analysis
(FBA) (5), the choice usually falls on the maximization of
biomass production, a useful proxy of the growth capabilities of
an organism. FBA has been widely applied to different organ-
isms (mostly bacteria) to investigate general aspects of metab-
olism, like flux distributions in different environments (10),
evolutionary dispensability of enzymes (11), or the plasticity of
the reaction network (12). Minimization of metabolic adjust-
ment (MOMA) (6) is instead able to predict the reorganization
of fluxes after a reaction knockout by minimizing the distance
between the FBA solution and that obtained from Eq. 1 after the
knockout.

Here, we consider a constraint-based model of metabolic
activity with the aim of characterizing flux states corresponding
to optimal net metabolic production. We neither assume con-
stancy-in-time of fluxes nor do we impose mass-balance con-
straints on metabolites. Rather, we allow for these to be recov-
ered as properties of the solutions. This assumption turns out to
be able to reproduce the empirical statistics of f luxes for the
bacterium E. coli in different environments with a remarkable
accuracy, and the physical and biochemical origin of the robust-
ness of the emerging picture can be completely understood.
Further biological insight can be gained by comparing the
variability of individual f luxes with data on phenomenological
gene essentiality.
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Model Definitions
The abstract setup we consider was originally introduced by J.
Von Neumann (13) to model growth in production economies as
an autocatalytic process. We consider a system of N chemical
reactions between P reagents, with fluxes and concentrations
evolving in discrete time t � 0,1,… (we leave the time scale
unspecified). For now, the system is assumed to be purely
autocatalytic, so that the total input of any given metabolite at
a certain time step must come from (all of or part of) the output
at the previous time step. Let Si(t) denote the scale at which
reaction i operates at time t, so that the total input and output
of metabolite � are given by I�(t) � ¥iSi(t)bi

� and O�(t) �
¥iSi(t)ai

�, respectively. Stability requires that C�(t) :� O�(t) �
I�(t � 1) � 0 at all times, otherwise the system would need an
outside metabolic source to survive. We focus our attention on
the feasibility of dynamical paths with constant growth rate � �
0, where I�(t � 1) � �I�(t). It is easy to see that, in such paths,
reaction rates must behave as Si(t) � si�t, with constants si � 0
satisfying the P linear constraints

c� � �
i�1

N

�ai
� � �bi

��si � 0, @� � 1, . . . , P . [2]

The main assumption now is that the network’s physical state
s* � {si

�} corresponds to one of those for which the growth rate
� attains its maximum possible value �* compatible with the
constraints (Eq. 2). The rationale for this choice lies in the fact
that, under general conditions, it can be proven that paths with
the optimal use of resources coincide, apart from an initial
transient, with those of maximal expansion (14). Note that the
sis are essentially the discrete-time version of the continuous
time fluxes �i of Eq. 1.

It is intuitive that the solution space of Eq. 2 shrinks as � is
increased starting from � � 0, where any flux configuration is a
viable state. Quite importantly, then, for a fixed set of input–
output relations, the solutions of Eq. 2 are bound to coincide
with those of Eq. 1 if �* � 1 and c� � 0 @�.

The typical behavior of Von Neumann’s model can be fully
appreciated analytically in the case of random graphs. Depend-
ing on their size and topology, autocatalytic networks with
random stoichiometry give rise to very different optimal states.
As in other constrained optimization problems (15), the key
control parameter is the ratio N/P � n of variables-to-
constraints. In random topologies (16, 17), as n increases, the
system crosses over from a contracting phase with �* � 1 to an
expanding one with �* � 1, passing through a stationary regime
with �* � 1 in which reaction fluxes are constant in time as in
FBA (although the values at which fluxes settle may be different).

Application to E. coli
A natural reaction network can be modeled as an autocatalytic
system when the uptake reactions that provide resources and
account for exchanges of metabolites with the surrounding
environment are included. We have applied the Von Neumann
scheme to the cellular metabolism of the bacterium E. coli, as
reconstructed in ref. 1. To set the stage, 3 different operations
have to be performed.

Environment Selection. To fix the environment where the cell lives,
we have defined a set of external metabolites on which we
applied uptake fluxes. We have considered 3 distinct environ-
mental conditions: (i) isolated cell, without uptakes; (ii) minimal
environment, with uptakes on a restricted set of metabolites (10),
namely CO2, K, NH4, PI, O2, SO4, and one of glu-L, succ, or glc;
(iii) rich environment, with uptakes on all external metabolites.

‘‘Leaf Removal.’’ Once the network is built, one has to remove
from the internal metabolites those that are never produced,
because the corresponding constraints are satisfied only by
taking � � 0 or by applying a null f lux to the corresponding
reactions (as is actually done in FBA).

Accounting for Reversibility. We have disposed of reversible reac-
tions by introducing 2 separate fluxes and taking the absolute
difference as the positive net flux.

The size of the resulting network, i.e., N and P, is ultimately
different for different environments.

We calculate the maximum growth rate �* numerically via a
generalized MinOver algorithm (18), detailed in ref. 17, in which
solutions are found at fixed �, and then � is gradually increased.
It has been shown rigorously (17) that this algorithm converges
to a solution at a fixed � if at least 1 solution exists. Moreover,
when multiple solutions occur (in which case they form a
connected set), the algorithm provides a uniform sampling of the
solution space [see supporting information (SI) for a test of this
property at low dimensions]. Anticipating that indeed many flux
vectors satisfy Eq. 2 at �* for E. coli, the latter is a particularly
important advantage because a uniform sampling is required to
characterize the solution space.

Characterization of the Solutions
For the metabolic network of E. coli, we have found �* � 0.999 	
0.001 independently of the environmental conditions we have
tested, so that the state of optimal growth is compatible with one
with constant fluxes. The distribution of reaction fluxes at �*
(see Fig. 1) displays a regime (�2 decades) with a scaling form
P(s) � s�� with exponent close to �1 [in reasonable agreement
with the experimental evidence based on a limited set of
measured fluxes (19, 10)], followed by a cutoff. Note that the flux
histogram is remarkably stable over different solutions. This
scenario has been partially reproduced by FBA (10), but the
solution obtained optimizing the biomass production systemat-
ically overestimates �. To compare individual f luxes with exper-
iments, we aimed at studying the solution obtained in conditions
similar to those described in ref. 19, focusing our attention on 17
fluxes from the central metabolism, as in ref. 6. Unfortunately,
we are unable to reproduce in detail the M9 medium used in ref.
19, and can fix the uptakes of only 3 metabolites, namely glucose,
CO2, and O2 identically to ref. 19. For the remaining part of the
environment, we chose to simulate a minimal medium and fixed
the 4 remaining external uptakes at arbitrary values (we did not

Fig. 1. Flux distributions at �* for E. coli in a minimal environment with 3
different carbon sources: glutamate (glu), succinate (suc), and glucose (glc).
Here, N � 1,053 and P � 630 (glu); N � 1,054 and P � 630 (suc); N � 1,057 and
P � 631 (glc). (Inset) The same distributions plotted after a binning of the
abscissa.
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observe a strong dependency of the results on these parameters).
Results are shown in Fig. 2. We stress that the medium we
consider is not strictly identical to that used in experiments. It is
worth noting (see also ref. 20) that experiments employ 13C-
labeled carbon sources as substrates for a growing bacterial
culture kept at constant density, and that the relative abundance
of metabolites can be captured by nuclear magnetic resonance or
mass spectroscopy. Reaction fluxes of different metabolic path-
ways are then inferred, assuming a model of the reaction
network.

With stationarity recovered at �* � 1, as discussed above, the
difference between the Von Neumann solution and that of FBA
arises from the fact that not all c�s attain their lowest allowed
value. This is clearly seen in Fig. 3. In each solution, some
metabolites exist with a nonzero c�, implying that in the steady
state, a net production of such metabolites occurs. This may also
signal an incompleteness of the stoichiometric data.

To get further insight on the existence of multiple flux states
compatible with Eq. 2 at �* and on the shape of the solution
space, a rough but effective way consists in monitoring the mean
overlap between different solutions. Given 2 solutions � and 	
at fixed �, we define their overlap q�	 as:

q�	 �
2
N �

i�1

N si�si	

si�
2 
 si	

2 �
1
N �

i�1

N

q�	
�i� . [3]

This quantity equals 1 when s� and s	 coincide and becomes
smaller and smaller as the distance between s� and s	 in the
space of flux vectors increases. In computing it, one should
consider a flux to be zero whenever its value is below a threshold
�, to take into account the fact that there is a loss of information
about relative fluctuations between different solutions in fluxes
smaller than �. We have chosen � � 10�5 to ensure that overlaps
are not overestimated. Results obtained with � � 10�5, 10�6, and
10�7 are identical. We have furthermore taken into account the
fact that the overlap between null f luxes must be defined by
consistency to be equal to 1. In Fig. 4, we report the behavior of
the mean overlap 
q�	� (the angular brackets representing an
average over many pairs of solutions) for E. coli and for a
network with the same topology and N/P but random Gaussian
stoichiometry. Random networks provide an important bench-
mark against which the behavior of real networks can be tested,
to highlight the extent to which observations are specific of the
particular organism that is being studied. In particular, the role
of topology and stoichiometry can be fully analyzed. For in-
stance, in ref. 17, it is shown that the power-law behavior of the
flux distribution cannot be ascribed to the specific network
topology.

One sees that for the artificial metabolic network, 
q�	� is an
increasing function of � that approaches 1 as �3 �* (Fig. 4B).
Moreover, the overlap histogram has a marked �-peak at q � 1
whose mass increases as � 3 �*. These results indicate that the
optimal solution is unique. On the other hand, the behavior of

q�	� for E. coli suggests that the volume of solutions stops
contracting when � reaches �0.8 from below. In particular, at �*,
multiple solutions survive. From the corresponding histogram,
Fig. 4C, we see that only �30% of reactions have an overlap close
to 1. In a different jargon, one may say that �30% of the
variables are frozen (i.e., assume the same value on all solutions
of the constrained optimization problem), whereas the remain-
ing are free. The existence of frozen variables characterizes many
random constraint satisfaction problems (21), but it is normally
hard to identify topological motifs where variables are more
likely to be frozen. In the present case, it is reasonable to expect
that for purely structural reasons, reaction chains are entirely

Fig. 2. Comparison of reaction fluxes predicted by the Von Neumann scheme
with 17 fluxes measured in ref. 19 and analyzed in ref. 6. The different
reactions (in no specific order) are reported on the horizontal axis (labeled as
in ref. 6), their corresponding fluxes (relative to the glucose uptake) on the
vertical axis. Red markers denote experimental values, blue ones theoretical
predictions (see, however, Characterization of the Solutions for details on the
environmental conditions considered). Note that many flux vectors satisfy Von
Neumann’s conditions at optimal growth. Three hundred different solutions
are reported here.
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Fig. 3. Values of c� for different metabolites (horizontal axis) in 500 different
solutions. The color code is reported on the right. The white background
corresponds to c� � 0. Colored marks indicate a net production of the
corresponding metabolite in that solution or a mass balance violation. One
sees that although mass balance holds for most metabolites, some are con-
sistently unbalanced, whereas others may or may not be, depending on the
solution.

Fig. 4. Overlap-based comparison between the solution spaces of E. coli and
of its random counterpart. (A and B) Mean overlap among 500 different
solutions as function of � in E. coli and in a random metabolic network; the last
point on the abscissa corresponds to the value of �* estimated by simulation.
(C and D) Overlap histogram P(q) at �* in E. coli and in the random network.
Note the different scales of the y axes in the lower images.
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frozen when the first reaction of the chain is frozen. This is
indeed confirmed by the map of frozen/free fluxes in E. coli’s
central metabolism, displayed in Fig. 5. The chain-like part of
glycolysis appears indeed to be frozen.

The existence of frozen fluxes raises the obvious question of
their biological significance. To address this point, we have
correlated reaction overlaps q�	

(i) with the essentiality of the
corresponding genes according to the notion of universal essen-
tiality used in ref. 22, which combines phenomenological rele-
vance (a gene is essential if knocking it out causes the cell to die)
with evolutionary retention (the presence of the gene in different
species). In ref. 22, 55 essential genes of E. coli involved in
metabolism have been identified that are also present in 80% of
32 different bacterial genomes. We have been able to link 52 of
such genes to reactions in the reconstructed network. It turns
out, see Fig. 6, that 43 of such genes correspond to reactions with
overlap �0.8 and that only 7 genes relate to reactions with an
overlap significantly �80%. Whether a gene is ‘‘essential’’ or not
(according to the definition of ref. 22) depends on the choice of
the environment. In particular, ref. 22 considers a rich medium
as the environment. For comparison, we have considered the-
oretical values of the overlaps for fluxes calculated assuming a
rich environment. Note that, in principle, the same gene can be
linked to a more or less variable flux in different environments.
However, the results presented are qualitatively preserved in the
minimal environment with different carbon sources. This sug-
gests that frozen fluxes, which in Von Neumann’s framework are
allowed a very limited variability if a state of optimal growth is
to be kept, may carry an evolutionary significance.

Role of Conserved Moieties
To trace back the physical origin of the results presented above,
we have studied the rank of the matrix A � �B associated to the
P linear constraints (Eq. 2) as a function of the parameter �, see
Fig. 7.

The singularity occurring at � � 1 is related to the presence
of conserved pools of metabolites, groups of reagents whose
total concentration is constant in time (23). Their existence is
due to the fact that the concentrations of metabolites of a certain

pool are always coupled with a common functional group. For
example the 3 metabolites ATP, AMP, and ADP belong to a
pool of cofactors that preserve the adenylate moiety (24). This
implies that a change in the concentration of a given metabolite
cannot be accomplished without considering the entire pool to
which that metabolite belongs.

A conserved pool g is formally defined by a P-dimensional
Boolean vector of elements zg

� such that zg
� � 1 if � � g and zg

� �
0 otherwise satisfying

Fig. 5. E. coli’s central metabolism: Nodes represent metabolites; an arrow
joining 2 nodes is present when a reaction exists converting one into the other.
Red (green) links denote frozen (free) reactions, with overlap larger (smaller)
than 0.9.

Fig. 6. Essential genes (vertical axis) versus overlap of the corresponding
reactions in the reconstructed metabolic network of E. coli (horizontal axis).

Fig. 7. The rank of the matrix associated to the system of inequalities (2) for
E. coli (isolated cell) as a function of �. Around the singularity, the rank equals
the number of metabolites; conserved pools of metabolites are present only
at exactly � � 1.
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�
��1

P

zg
��ai

� � bi
�� � 0, @i � 1, . . . , N . [4]

Such conservation laws manifest themselves precisely at � � 1,
By virtue of Eq. 2, the relation ¥� zg

�c� � 0 must hold for any g.
It follows that either �*  1, or all f luxes connected to a
metabolite belonging to a conserved pool must be equal to zero.
Because the null solution s � 0 must be discarded on obvious
physical grounds, if all f luxes are connected to metabolites in a
conserved pool then necessarily �*  1. This is consistent with
the results obtained in different environmental conditions and
implies that this scenario must be stable against small pertur-
bations of the network topology.

Moreover, from Eqs. 4 and 2, it is easy to see that, for � � 1,
� � g implies c� � 0, i.e., for a metabolite belonging to a
conserved pool the mass-balance condition must be strictly valid.
We have shown instead (Fig. 3) that the values of the constraints
are not always zero: For some metabolites, the mass balance
condition is not reached, and we can assert that they do not

belong to any conserved pool (within the stoichiometric descrip-
tion used).

We conclude that in the state of optimal growth with �* � 1,
in addition to the stationarity of reaction rates, a spontaneous
condition of mass balance holds for most, not all, metabolites.

In summary, the Von Neumann model relies on the assump-
tion that the arrangement of metabolic f luxes follows a principle
of growth maximization. It does not imply a priori either the
mass balance or the stationarity of fluxes, but these 2 conditions
are essentially recovered at the maximum growth rate. This is
due to the presence of conserved metabolic pools. The singu-
larity in the rank of A � �B at � � 1 implies that the physically
relevant solutions are those to which the system tends as �3 1.
In this limit, mass balance is recovered (i.e., c� � 0) for most, but
not all, metabolites. This provides a nontrivial correction to the
picture extracted by FBA and reproduces the limited experi-
mental evidence that is available.
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