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Abstract
The method of continuous variation in conjunction with 6Li NMR spectroscopy was used to
characterize lithium enolates derived from 1-indanone, cyclohexanone, and cyclopentanone in
solution. The strategy relies on forming ensembles of homo- and heteroaggregated enolates. The
enolates form exclusively chelated dimers in N,N,N’,N’-tetramethylethylenediamine and cubic
tetramers in tetrahydrofuran and 1,2-dimethoxyethane.

Introduction
Lithium enolates are used pervasively throughout organic synthesis.1 A comprehensive survey
of scaled procedures used by Pfizer Process over two decades shows that 68% of all C-C bond
formations are carbanion based and 44% of these involve enolates.2,3 Even a casual survey of
synthesis papers emanating from academic labs reinforces the notion that lithium enolates are
indispensible.1 It may seem puzzling, therefore, that structure-reactivity relationships in
enolates--the influence of solvation and aggregation on reactivity--are poorly understood when
compared with other commonly used classes of organolithiums such as alkyllithiums and
lithium amides.4,5,6,7,8 The primary contributions have come from Jackman and coworkers,
4a,d,5 Streitwieser and coworkers,6 and several research groups focusing on methacrylate ester
polymerizations.7 The limited progress toward understanding lithium enolates is glaringly
simple: Despite extensive crystallographic determinations of lithium enolates,9 there are few
methods for determining enolate structures in solution and none are general (vide infra).
Without an understanding of solution structure, detailed mechanistic studies are not possible.
10,11,12

In the study described below, we characterize simple ketone enolates 1-3 coordinated by
N,N,N’,N’-tetramethylethylenediamine (TMEDA), tetrahydrofuran (THF), and 1,2-
dimethoxyethane (DME). The strategy relies on the method of continuous variation in which
ensembles of homo- and heteroaggregated enolates are monitored by 6Li NMR spectroscopy.
The results illustrate how ligands influence the structures of enolates. Of greater importance,
however, is that the strategy promises to be general.
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Background
Structures of Lithium Enolates in Solution

Based on analogy with crystal structures of lithium enolates and related organolithiums,9,13
one might surmise that 1-3 form monomers, dimers, tetramers, or hexamers (4-7) in solution.
Such a claim, however, is wrought with risk. Although crystal structures offer important views
of lithium enolates, one cannot infer from crystal structures the dominance or even the existence
of these forms in solution: solution aggregation numbers must be determined independently.
14 Unfortunately, the structures of lithium enolates in solution are not easily examined using
NMR spectroscopy because of the high inherent symmetries of 4-7 and opaque Li-O
connectivities arising from the absence of scalar Li-O coupling. Consequently, structural
organolithium chemists have turned to indirect methods for probing the aggregation of lithium
enolates in solution. Progress reported to date is limited and easily summarized.

Colligative measurements are often used to study aggregation behavior15 and have been used
to examine lithium enolates and related O-lithiated species on several occasions.16
Unfortunately, such measurements are sensitive to potentially undetectable impurities and offer
dangerously simple answers when complex equilibria might be involved. In our opinion, they
are of marginal use unless corroborated by an independent spectroscopic method.

Streitwieser and coworkers monitored mixed aggregate equilibria derived from lithium
enolate-carbanion mixtures to study aggregation of enolates in ethereal solvents.6 Their
methods are rigorous, but a reliance on UV spectroscopy and ultra-high dilution has restricted
their studies to enolates derived from aromatic ketones and esters. Jackman and coworkers
used 13C spin-lattice relaxation times, colligative measurements, and 7Li quadrupolar splitting
constants (QSCs) to conclude that lithium phenylisobutyrate and several related hindered
aromatic enolates are dimers or tetramers.5,17 More recently, Noyori and coworkers reported
that addition of hexamethylphosphoramide (HMPA) to lithium cyclopentenolate (3) affords
the enolate dimer.18 Subsequently, Reich concluded that addition of HMPA to 3 in THF causes
serial ligand substitution of a tetramer to the exclusion of detectable deaggregation.19 Noyori
appears to have been misled by a flawed colligative measurement of lithium cyclopentenolate
in THF reported years earlier.16c (We concur with Reich; vide infra). Jacobsen and coworkers,
in a fleeting foray into organolithium chemistry, used a combination of methods (including a
serial solvation akin to Reich’s approach) to show that lithium pinacolate forms a very odd
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trisolvated tetramer in pyridine/cyclohexane solution.20 Hindered ester enolates central to
methacrylate ester polymerizations have been shown to aggregate in solution. A combination
of colligative and spectroscopic measurements provide a strong circumstantial case supporting
dimers and tetramers.7

We began studying lithium enolates as part of a collaboration with Sanofi-Aventis to examine
the structure and reactivity of enolate 8.21 Mixtures of antipodes (R)-8 and (S)-8 afforded an
ensemble of aggregates (eq 1) that could be monitored by 6Li NMR spectroscopy. Both the
number of heteroaggregates and their dependencies on relative proportions of (R)-8 and
(S)-8 proved highly characteristic of hexamers and inconsistent with monomers, dimers, and
tetramers.

(1)

Method of Continuous Variation
The protocol used to characterize 8 and adapted to characterize 1-3 formally falls under the
rubric of the method of continuous variation22 (also called the method of Job23), which has
found widespread application in chemistry and biochemistry.24 A brief digression may be
instructive.

In its simplest and most prevalent usage, the method of continuous variation identifies the
stoichiometry of a single complex (or aggregate) in solution. Imagine species A and B form
an AB complex (eq 2). Plotting a physical property (P) that reflects the concentration of AB
versus mole fraction of A (XA) affords what is often called a Job plot (Figure 1). The
stoichiometry of the complex is gleaned from the position of the maximum ([AB]max) along
the X-axis; an AB complex affords [AB]max at XA = 0.5. If, however, AB2 or A2B complexes
are formed, the maxima appear at XA = 0.33 and 0.67, respectively. The magnitude of the
equilibrium constant (Keq) is reflected in the shape of the curve: A sharp apex (solid line in
Figure 1) results from Keq ≫ 1, whereas the curve (dotted line) is emblematic of Keq ≈ 1.

(2)

Ensembles of Aggregates
The method of continuous variation can, in principle, be extended to complex systems in which
an ensemble of AmBn aggregates is observed, and indeed some progress has been made. There
are several instances in organolithium chemistry, for example, in which investigators studied
heteroaggregation with the expressed purpose of demonstrating homoaggregation is probable.
25 The earliest report appears to be that of Brown and coworkers in which they demonstrated
a penchant for tetramer formation by showing that mixtures of methyllithium and lithium
chloride afford mixed tetramers.26 Brown considered the influence of proportions on the
distribution of aggregates, but the studies were largely qualitative. Günther and coworkers used
mixtures of deuterated and undeuterated organolithiums to cleverly circumvent potentially
costly and tedious 13C labeling of organolithiums.27 The study of sodium alkoxides by Gagne
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and coworkers is probably most germane to the study described below.28 1H NMR
spectroscopy was used to probe ensembles of sodium alkoxide tetramers, with the symmetries
of the mixed tetramers playing a significant role.29

During studies of enolate 8, we provided a general solution to the problem of monitoring and
quantitating large ensembles of aggregates. We illustrate the method using the generic
ensemble described by eq 3

(3)

Table 1 summarizes the predicted number of spectroscopically distinct structural forms
observed for monomers, cyclic dimers, cubic tetramers, and hexagonal hexamers derived from
An/Bn mixtures. Because of their importance in this paper, we have included a graphical
description of dimers and tetramers in Chart 1; magnetically inequivalent 6Li nuclei within
each aggregate are denoted with black and grey spheres. Both the number and spectral
complexity of the aggregates within the ensembles increases markedly with aggregate size. An
ensemble of tetramers derived from a mixture of A4 and B4 contain a substantial number of
aggregates (five) and an even larger number of discrete resonances (eight). Hexamers manifest
enormous spectral complexity due to the proliferation of aggregate stoichiometries and the
existence of positional isomers.

The populations of homo- and heteroaggregates in Table 1 are described quantitatively by eqs
4-6 where the experimentally measured components are mole fraction of A, XA, and relative
NMR resonance integrations, In. The model includes provisions for non-statistical distributions
(differing relative stabilities) and forms the foundation for the studies of dimeric and tetrameric
enolates (N = 2 and 4) described in the next section.

(4)

(5)

(6)

μA and μB = chemical potentials of A and B

gp = free energy of assembly of aggregates with n subunits of A arranged in permutation,
p

C = a constant30

XA = mole fraction of enolate A

In = relative integration of aggregate n31

n = aggregate label bearing n subunits of A
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N = aggregation number

ϕn = a measure of relative stability of aggregate n

Results
General Methods

Ensembles of homo- and heteroaggregates derived from binary mixtures of lithium enolates
(prepared from [6Li]LiHMDS) present challenges associated with spectral dispersion and
resolution. Resolution is optimal when the chemical shift separation of the homoaggregates is
large. To this end, a markedly downfield 6Li resonance renders indanone-derived enolate 1
central to the strategy. The line widths and resolution were optimized by adjusting the probe
temperature although the origins of the temperature-dependencies were often not obvious.
Spectra were also recorded using [6Li,15N]LiHMDS32 to detect LiHMDS-lithium enolate
mixed dimers;33 only DME-solvated mixed dimers 9 (of unknown DME hapticity) were
detected.34 Enolates 1-3 are structurally homogeneous in TMEDA, THF, and DME as shown
by 6Li NMR spectroscopy.35 Studies using mixtures of 1 and 2 as well as 1 and 3 provided
analogous results for all solvents, although cyclopentanone-derived enolate 3 is prone to form
impurities. Mixtures of 1 and 2 are presented emblematically. All raw data as well as additional
NMR spectra and Job plots are provided in supporting information.

TMEDA
TMEDA-solvated enolates offer the simplest illustration of how the method of continuous
variation is used to ascertain aggregate structures. 6Li NMR spectra of mixtures of enolates
1 and 2 reveal the resonances of the homo- and heteroaggregated enolates (Figure 2, LiHMDS
monomer36 resonance not shown), consistent with an ensemble of dimers (Table 1 and Chart
1). Plotting relative integrations of the three enolate aggregates versus mole fraction of enolate
2 (X2) affords the Job plot in Figure 3. The curves represent a parametric fit to the data according
to eqs 7 and 8. (The ϕn′s in eq 8 derive from eqs 4-6.) The experimental data correlate with a
nearly statistical distribution of homo- and heterodimers as illustrated in Figure 4. The
aggregate proportions are invariant over a 10-fold range of absolute enolate concentration
(0.05-0.50 M), supporting a shared aggregation number for the three species.

(7)

(8)

Minor deviations of the intended mole fraction from the actual mole fraction can arise from
experimental error, non-quantitative enolization, selective formation of mixed aggregates with
LiHMDS, or formation of byproducts. Accordingly, we measure the mole fraction by simply
integrating the 6Li resonances. A Job plot using measured mole fraction shows a marginal
improvement in the parametric fit. We believe, however, that the measured mole fraction is
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more accurate than the intended mole fraction. We belabor this seemingly trivial point because
measuring the mole fraction becomes important in some circumstances (vide infra).

The combination of aggregate count and symmetries as well as the parametric fit attest to the
existence of an ensemble of dimers. Is it possible, however, that one of the homoaggregates
might not be a dimer? Can we distinguish all-dimer ensemble (A2-AB-B2) from, for example,
A2-AB-B4 ensembles wherein one of the homoaggregates is a tetramer? The fit in Figure 5 to
the A2-AB-B4 model is inferior to the fit to the A2-AB-B2 model in Figure 4, with the offset
of the maximum in the AB curve being most readily apparent. The relative qualities of the fits
in Figures 4 and 5 are easily visualized by plotting the sum of the absolute value of the residuals
versus mole fraction (Figure 6) showing substantially larger deviations from the A2-AB-B4
model. These analyses are carried out routinely and included as supporting information.
Supporting information also includes a considerable number of simulations (hypothetical
cases) examining how incorrect models would deviate from the experimental data.

TMEDA-solvated dimers were shown to be doubly-chelated (10) by 13C NMR spectroscopy.
Spectra recorded on 0.10 M solution of 1 containing 2.0 equiv of TMEDA reveal free and
bound TMEDA in equal proportions as discrete resonances. (Free and η1-bound TMEDA
would rapidly exchange, resulting in time averaging of the resonances.37) Further cooling to
-90 °C shows decoalescences of the methyl resonances that are highly characteristic of half-
chair conformer (11) in slow conformational exchange.35c,38,39 The analogous
decoalescences of enolates 2 (and 3) were less convincing.

THF
Enolates 1-3 in THF solution are shown to form tetramers 12. By example, 6Li NMR spectra
of mixtures of enolates 1 and 2 (Figure 7) reveal the resonances of the two homoaggregates
along with three mixed aggregates displaying highly characteristic pairs of resonances in 3:1,
2:2, and 1:3 proportions (Table 1 and Chart 1). Plotting relative integrations of the five
aggregates versus measured mole fraction of enolate 2 (X2) affords the Job plot in Figure 8.
The curves result from a parametric fit to the data according to eqs 9-14.21 (The ϕn′s in eqs
12-14 derive from eqs 4-6.) The aggregate ratios are invariant over a tenfold range of absolute
concentrations, confirming that the three species are of the same aggregation number. A fit to
an ensemble comprising four tetramers with one homoaggregated dimer reveals an inferior fit
(supporting information). Superimposing the parametric fit in Figure 8 with the results
anticipated for a statistical distribution of aggregates reveals a high correlation (Figure 9).
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(9)

(10)

(11)

(12)

(13)

(14)

DME
The structural studies of enolates 1-3 in DME proved challenging because of an apparent
sensitivity of the enolates (or enolizations). Enolizations using 1.0 equiv of LiHMDS produced
considerable impurities. Excess LiHMDS provided enolates cleanly but afforded appreciable
concentrations of mixed dimers 9,33,34 which caused resolution problems. Enolate mixtures
generated from 1.1 equiv of LiHMDS offered the best compromise. 6Li NMR spectra recorded
on mixtures of 1 and 2 as well as 1 and 3 afford resonances characteristic of an ensemble of
tetramers (Figure 10a). The resulting Job plots (necessarily using measured mole fraction
because of the mixed aggregates and other minor impurities) are fully consistent with nearly
statistical distributions (Figure 11). Thus, the enolates form cubic tetramers 13, presumably
bearing non-chelated (η1) DME ligands.40 Chelated dimers of general structure 14 were not
observed.
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During efforts to optimize the resolution of the 6Li resonances, we discovered a rapid
intraaggregate exchange for DME-solvated enolates--the exchange of 6Li nuclei within each
aggregate41--that was not observed for their THF-solvated counterparts. Warming the probe
causes the pairs of resonances corresponding to each heteroaggregate to coalesce to a
single 6Li resonance--five resonances total (cf. Figures 10a and 10b). A Job plot determined
at -30 °C in the limit of fast intraaggregate exchange is essentially indistinguishable from the
Job plot in the slow exchange limit. The absence of a temperature dependence is notable (vide
infra). A highly speculative mechanism accounting for the facile exchange via a transient cyclic
tetramer is provided (eq 15).

(15)

The dynamic phenomenon represented by eq 15 is unique to the DME-solvated enolates and
has potentially broader implications. Ligands that readily bind in chelated or non-chelated
forms are said to be hemilabile.42 When a transition state is stabilized by chelation whereas
the ground state is not, the selective stabilization can afford marked rate accelerations (up to
10,000 fold).43 We suspect, therefore, that reactions of DME-solvated enolates with the
standard electrophiles are accelerated by such hemilability (eq 16).

(16)

Solvent Swapping
The unexpected absence of DME-chelated dimers prompted us to turn to a simple control
experiment that shows whether a change in solvent is accompanied by a change in aggregation.
44 The experiment requires a measurable 6Li chemical shift difference in the two limiting
forms. It is based on the rapid solvent-solvent exchange (ligand substitution) and much slower
aggregate-aggregate exchange.45 By recording a series of spectra in which one coordinating
solvent is incrementally replaced by a second, either of two limiting behaviors is observed: (1)
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If the two observable forms in the two coordinating solvents differ only by ligating solvent,
the incremental solvent swap will cause the resonances to exchange by time-averaging (Figure
12a); (2) if the observable forms in the two solvents differ by aggregation number, incremental
solvent swap causes one aggregate to disappear and the other to appear (Figure 12b).

Indanone-derived enolate 1 provides high chemical shift dispersion and offers an excellent
illustration of the technique. Substitution of THF with DME reveals only a time-averaged
change in chemical shift (Figure 13a), supporting the assignment of enolate 1 as tetramers in
both solvents. Conversely, incrementally replacing THF with TMEDA reveals the replacement
of one resonance with the other, characteristic of an aggregate exchange (Figure 13b) and
supporting the assignments as fundamentally different aggregated forms.46 Similarly,
replacing TMEDA with DME showed discrete resonances (behavior as in Figure 12b)
consistent with a solvent-dependent change in aggregation number. Moreover, DME only
reluctantly converts TMEDA-solvated dimer 10a to DME-solvated tetramer 13a; ≈30:1
DME:TMEDA affords equal populations of the two aggregates.47

Discussion
Determining the structure of organolithium species in solution has never been easy, but the
problems presented by ketone enolates and related O-lithiated species are acute. Ascertaining
the aggregation number invariably reduces to a problem of breaking symmetry.25 In the case
of N-lithiated and C-lithiated species, this is most conveniently achieved by
observing 15N-6Li and 13C-6Li scalar coupling.27a,48 For O-lithiated species, 17O-6Li
coupling is of no practical value.49 We used the method of continuous variation21-25 to
characterize enolates 1-3 in TMEDA, THF, and DME. The discussion begins with a synopsis
of the method, which is followed by a description of the results. Our primary concern at present,
however, is on developing a general solution to the problem. Accordingly, in a third section
we critique the method by emphasizing subtleties that may impact future applications.

The Method of Continuous Variation
We determined the structures of lithium enolates by generating an ensemble of
heteroaggregated enolates from two homoaggregated enolates (An and Bn) as described
generically in eq 3. Two key observations using 6Li NMR spectroscopy--the numbers of
aggregates and the symmetries of the heteroaggregates--are highly diagnostic of the standard
structural forms (4-7) as described in Table 1 and Chart 1. Plotting relative aggregate
integrations versus mole fraction in binary enolate mixtures affords a Job plot as exemplified
by Figures 3 and 8. The curves in Figures 3 and 8 correspond to best fits to models based on
eqs 4-6. The results for enolates 1-3 are summarized in Scheme 1 and discussed with some
literature context as follows.

Lithium Enolate Structures
TMEDA, one of the most prevalent ligands in organolithium chemistry,50 has been shown to
provide monomers, dimers, tetramers, and other more obscure structural forms.9,13 Although
TMEDA shows a penchant for chelation, η1 (non-chelated) TMEDA occasionally arises.51
Crystal structures of lithium enolates reveal a distinct preference for TMEDA-chelated dimers.
9,52,53 We find that enolates 1-3 all afford TMEDA-chelated dimers 10 as the only detectable
forms in solution. The homo- and heteroaggregates are distributed statistically. Chelation was
confirmed by 13C NMR spectroscopy.

A large crystallographic database stemming from seminal studies by Seebach and coworkers
suggests that THF-solvated lithium enolates and related O-lithiated species can exist in a
number of aggregation states, but THF-solvated tetramers of general structure 12 are the most
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prevalent.9 Cyclopentanone-derived enolate 3, for example, was one of the first two enolates
characterized crystallographically, and it was shown to be tetrameric.35a Structural studies of
3 in solution are controversial. Seebach16c and Noyori18 endorse a model based on mixtures
of dimers and tetramers whereas Reich concludes only tetramers exist.19 We concur with
Reich; enolates 1-3 form tetramers as the only observable forms in THF.

It may be tempting to assume that DME is simply an oxygen analog of TMEDA. One could
imagine the lower Lewis basicity of ethers versus amines is offset by lower steric demands of
the ethers.54,55 With that said, considerable evidence suggests that DME is not always a
strongly chelating ligand.43,56 DME binds to lithium in either η1 (non-chelating)40 or η2

(chelating)9,13 capacities, depending on the particular environment. With respect to ketone
enolates, there is a striking paucity of representation in the crystallographic literature.34,57
We were, however, somewhat surprised to find that enolates 1-3 afford tetramers 13 to the
exclusion of the corresponding chelated dimers.

Homoaggregates from Heteroaggregates
The Job plots and affiliated parametric fits are fully consistent with the assignments
summarized above. We remind the reader, however, that the primary goal is to exploit an
ensemble of heteroaggregates to provide insights into the structures of the homoaggregates.
One might question whether the linkage between the heteroaggregates and homoaggregates is
strong. As a simple example, could a mixture of homoaggregated dimer and homoaggregated
tetramer (eq 17) masquerade as an ensemble of dimers? The accumulated evidence that makes
such a scenario unlikely is summarized as follows.

(17)

1. The quality of the fits to the dimer and tetramer models are excellent. If an ensemble
contains aggregates of differing overall aggregation numbers (as in eq 17), the Job
plot would not be centrosymmetric and would appear so only by coincidence. The
nearly statistical distribution of homo- and heteroaggregates certainly supports a
shared aggregation number.58

2. A mixture of homo- and heteroaggregates of differing aggregation numbers would
change with absolute concentration; control experiments detect no such concentration
dependencies. We hasten to add, however, that the concentration dependencies are
technically difficult experiments.

3. To the extent that a rogue homoaggregate of unique aggregation number results from
an enthalpic effect, the equilibrium would be temperature dependent. We detected no
such temperature dependencies. By example, mixtures of DME-solvated enolates 1
and 2 afforded Job plots at -30 °C and -105 °C that were indistinguishable.

4. Chelation of TMEDA in dimers 10a-c detected by 13C NMR spectroscopy
convincingly excludes tetrasolvated tetramers, which would demand non-chelated
TMEDA ligands.

5. As illustrated in Figures 12 and 13, replacing one solvent incrementally with another
offers a simple test of whether the change in coordinated solvent also causes a change
in the aggregation number. Such “solvent swapping” experiments were fully
congruent with the assignments.

6. An ongoing study encompassing a wide array of ketone-, ester-, and carboxamide-
derived enolates is allowing us to pair widely disparate enolates to form ensembles.
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The redundancy ensures that no single enolate is inordinately and anomalously
influencing the outcome, and no surprises have appeared yet.59

Conclusion
The studies described above can be distilled to a single concept: Ensembles of homo- and
heteroaggregates--the number of discrete aggregates in the ensembles, their characteristic
symmetries, and the resulting Job plots--offer a view of spectroscopically opaque
homoaggregates. The strategy should apply to a diverse range of lithium enolates in a variety
of solvents, and, indeed, this is being pursued. We believe, however, that exploiting ensembles
to probe aggregation phenomena could be useful in a much broader context.

Experimental Section
Reagents and Solvents

Substrates are commercially available. TMEDA was recrystallized as the hydrochloride salt
prior to distillation.60c TMEDA, THF, and DME were distilled from solutions containing
sodium benzophenone ketyl. Hydrocarbon solvents were distilled from blue solutions
containing sodium benzophenone ketyl with approximately 1% tetraglyme to dissolve the
ketyl. [6Li]LiHMDS and [6Li,15N]LiHMDS were prepared and recrystallized as described
previously.32 Air- and moisture-sensitive materials were manipulated under argon using
standard glove box, vacuum line, and syringe techniques. Samples for spectroscopic studies
were prepared as described in supporting information.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Representative Job plot showing a physical property, P, of complex AB as a function of mole
fraction (XA) of component A. [AB]max corresponds to the maximum concentration of complex
AB. The solid line (—) illustrates Keq ≫ 1. The dotted curve (---) illustrates Keq ≈ 1.
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Figure 2.
6Li NMR spectra of 0.10 M mixtures of [6Li]1 (A) and [6Li]2 (B) in 1.0 M TMEDA/toluene
at -90 °C. a) X2 = 0.0; b) X2 = 0.23; c) X2 = 0.52; d) X2 = 0.79; e) X2 = 1.0.
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Figure 3.
Job plot showing the relative integrations versus mole fraction of 2 for 0.10 M mixtures of
enolates [6Li]1 (A) and [6Li]2 (B) in 1.0 M TMEDA/toluene at -90 °C. From eqs 4-6: ϕ0 =
0.95 ϕ1 = 1.0; ϕ2 = 0.95.
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Figure 4.
The best-fit curves from the Job Plot in Figure 3 (dashed lines) overlaid with that expected
from a statistical distribution of dimers (solid lines).

Liou et al. Page 20

J Am Chem Soc. Author manuscript; available in PMC 2009 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Job plot showing the relative integrations versus mole fraction of 2 fit to an ensemble of A2-
AB-B4 (supporting information) of 0.10 M mixtures of enolates [6Li]1 (A) and [6Li]2 (B) in
1.0 M TMEDA/toluene at -90 °C.

Liou et al. Page 21

J Am Chem Soc. Author manuscript; available in PMC 2009 April 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Absolute residuals versus mole fraction of 2 for the fits of mixtures of enolates [6Li]1 (A) and
[6Li]2 (B) in 1.0 M TMEDA/toluene at -90 °C to models based on A2-AB-B4 (●) and A2-
AB-B2 ( ). The rms of the sum of the squares of the residuals is 0.005 for the fit to A2-AB-
B2 and 0.03 for the fit to A2-AB-B4.
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Figure 7.
6Li NMR spectra of 0.20 M mixtures of [6Li]1 (A) and [6Li]2 (B) in 2.0 M THF/toluene at -30
°C. a) X2 = 0.0; b) X2 = 0.19; c) X2 = 0.48; d) X2 = 0.78; e) X2 = 1.0. The * denotes the LiHMDS
dimer.
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Figure 8.
Job plot showing the relative integrations versus mole fraction of 2 in 0.20 M mixtures of
enolates [6Li]1 (A) and [6Li]2 (B) in 2.0 M THF/toluene at -30 °C. From eqs 4-6: ϕ0 = 0.83;
ϕ1 = 0.94; ϕ2 = 1.11; ϕ3 = 1.24; ϕ4 = 1.0.
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Figure 9.
The best-fit curves from the Job Plot in Figure 8 (dashed lines) overlaid with those expected
from a statistical distribution of tetramers (solid lines).
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Figure 10.
6Li NMR spectra of 0.20 M equimolar mixture of [6Li]1 (A) and [6Li]2 (B) in 2.0 M DME/
toluene. a) -105 °C; b) -30 °C.
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Figure 11.
Job plot showing the relative integrations versus mole fraction of 2 in 0.20 M mixtures of
enolates 1 and 2 in 2.4 M DME/toluene at -105 °C. From eqs 4-6: ϕ0 = 0.70; ϕ1 = 0.99; ϕ2 =
1.26; ϕ3 = 1.29; ϕ4 = 1.0
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Figure 12.
6Li NMR spectra anticipated if replacing solvent S by S’ causes: (A) only exchange of solvent
on a common enolate aggregate (An), and (B) an aggregation change (Am for An).
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Figure 13.
Selected 6Li NMR spectra from solvent swap experiments using 0.10 M [6Li]1 with 3.0 M
total ligand/toluene at -90 °C. A) Solvent swap between THF and DME. The mixed solvate is
observed at 1:30 ratio of the two solvents. B) Solvent swap between THF and TMEDA. Both
aggregation states are observed at a solvent ratio of 1:2.
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Scheme 1.
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Chart 1.
Dimer and tetramer mixtures showing magnetically inequivalent lithium sites.
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Table 1
Spectroscopically distinguishable aggregates in binary mixtures of lithium enolates A and B.

aggregation number AmBn aggregates (ratio of 6Li resonances)

monomer A B

dimer A2 AB B2

tetramer A4 A3B1 (3:1) A2B2 (2:2) A1B3 (1:3) B4

hexamer A6 A5B1 (1:2:2:1)

A4B2 (2:2:2) A4B2 (1:2:2:1) A4B2 (2:4) = 3 positional isomersa

A3B3 (3:3) A3B3 (3:3) A3B3 (1:1:1:1:1:1) = 3 positional isomersa

A2B4 (2:2:2) A2B4 (1:2:2:1) A2B4 (4:2) = 3 positional isomersa

A1B5 (1:2:2:1) B6
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