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Abstract

Nature utilizes self-assembly to fabricate structures on length scales ranging from the atomic to the macro scale. Self-
assembly has emerged as a paradigm in engineering that enables the highly parallel fabrication of complex, and often
three-dimensional, structures from basic building blocks. Although there have been several demonstrations of this self-
assembly fabrication process, rules that govern a priori design, yield and defect tolerance remain unknown. In this paper, we
have designed the first model experimental system for systematically analyzing the influence of geometry on the self-
assembly of 200 and 500 mm cubes and octahedra from tethered, multi-component, two-dimensional (2D) nets. We
examined the self-assembly of all eleven 2D nets that can fold into cubes and octahedra, and we observed striking
correlations between the compactness of the nets and the success of the assembly. Two measures of compactness were
used for the nets: the number of vertex or topological connections and the radius of gyration. The success of the self-
assembly process was determined by measuring the yield and classifying the defects. Our observation of increased self-
assembly success with decreased radius of gyration and increased topological connectivity resembles theoretical models
that describe the role of compactness in protein folding. Because of the differences in size and scale between our system
and the protein folding system, we postulate that this hypothesis may be more universal to self-assembling systems in
general. Apart from being intellectually intriguing, the findings could enable the assembly of more complicated polyhedral
structures (e.g. dodecahedra) by allowing a priori selection of a net that might self-assemble with high yields.

Citation: Azam A, Leong TG, Zarafshar AM, Gracias DH (2009) Compactness Determines the Success of Cube and Octahedron Self-Assembly. PLoS ONE 4(2):
e4451. doi:10.1371/journal.pone.0004451

Editor: Enrico Scalas, University of East Piedmont, Italy

Received October 10, 2008; Accepted December 9, 2008; Published February 12, 2009

Copyright: � 2009 Azam et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This material is based in part upon work supported by grants from the Arnold and Mabel Beckman Foundation, Camille-Dreyfus Foundation and the
National Science Foundation (Career-DMMI 044816). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript. Any conclusions expressed in this paper are those of the authors and do not reflect the views of the funding agencies.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dgracias@jhu.edu

Introduction

Nature utilizes self-assembly to fabricate structures on a wide

range of size scales from the angstrom to the kilometer [1].

Recently, several researchers have attempted to mimic natural self-

assembly by engineering components that interact and assemble

into three-dimensional (3D) structures [1–3]. However, while

natural self-assembly occurs with high fidelity, engineering

principles guiding a priori design of complex structures with high

defect tolerance are not well-understood.

One important natural self-assembling system that has been

extensively studied is protein folding. In protein folding, it has

been postulated that the net interactions of the building blocks

need to result in a funnel-shaped potential energy landscape with

minimal kinetic trapping [4]. However, exactly how to design a

system featuring such minima is not entirely clear. Therefore,

aside from relatively simple and unrealistic peptide sequences, the

final structure of a folded protein is still extremely challenging to

design or predict from its linear amino acid sequence [5,6]. Several

researchers have invoked the concept of compactness and a

zipping-and-assembly model to elucidate protein folding [7–10].

The model states that with increasing compactness there are fewer

accessible conformations during folding and that a small radius of

gyration increases the likelihood of achieving the desired

secondary structure in the protein [11]. While it is possible to

explore this hypothesis using simulations, it is challenging to verify

it experimentally. Additionally, it is not clear if such hypotheses are

applicable to other self-assembling systems.

Our group has focused on studying the self-assembly of two-

dimensional (2D), patterned templates into micropolyhedra [12].

From an engineering perspective, patterned micropolyhedra may

seem like simple objects, but it should be noted that self-assembly is

the only strategy that has been demonstrated so far to fabricate

such three-dimensionally patterned objects in a highly parallel

manner. In order to accomplish self-assembly of a patterned

polyhedron such as a cube, one might envision starting with six

patterned, square panels that have mating edges (Fig. 1A).

However, the number of configurations in which the six square

panels can interact and join together is large, and this assembly

results in too many kinetic minima or defect states to successfully

result in the formation of a cube with high yield. Thus, we limited

the number of configurations by tethering the square panels

together in the form of a 2D net (Fig. 1B). Additionally, we utilized

two types of hinges: internal hinges between panels and external

hinges at the outer edges of each panel (Fig. 2); the hinges were

composed of solder. Assembly occurred when the solder was
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liquefied and minimized its exposed liquid surface area. The

surface tension caused the internal hinges to bead up, creating a

torque that rotated the panels, and enabled the external hinges on

adjacent panels to fuse when the panels met. Although most

previous self-folding work has only utilized internal hinges, the

addition of external hinges to self-folding structures fabricated in

our research group has resulted in increased defect tolerance and

self-correction; this has translated into high yield assembly of

micropolyhedra.

It is known that not all arrangements of six square panels

connected edge-to-edge will fold into a cube. If one is given a

simple polygon (and its interior) in the plane, Alexandrov’s

theorem gives conditions under which this polygon can be folded

by the identification of points of the polygon’s boundary to a

convex polyhedron or a double covering of a convex polygon [13].

Here, the full power of this theorem is not required. What will be

considered instead are polygons that have fold lines (we call these

lines internal hinges, which separate the original polygon’s interior

into polygonal panels) which will form convex polyhedra (with the

panels becoming faces of the completed polyhedron) when folded

along the fold lines and the edges of the polygonal boundary are

joined together (Fig. 2). The term ‘‘net’’ is often used to describe

this situation. Note that for some nets, when using the existing fold

lines, it is possible to make either a non-convex polyhedron or a

convex polyhedron depending on how the polygonal edges are

joined together, e.g. the nets of the octahedron can form non-

convex and regular octahedra. However, this does not arise for the

cube. There are 11 nets that fold into a cube [14] and 11 that fold

into octahedra, but the number of nets varies for different

polyhedra. For example, the tetrahedron has two nets and the

regular dodecahedron has 43380 nets [15]. The basic constraints

in folding the polyhedral net are that the material must exhibit

continuous folding, conserve distances along its surface and not

self-intersect [16].

When we first started assembling polyhedra, no design rules

existed for which of the 11 nets would self-assemble with the

highest yields. We picked the mirror-symmetric cruciform (net 11

in Fig. 3A) due to its familiarity, and it is used by several other

groups [17–20]. In this paper, we systematically investigated the

self-assembly of all 11 cube nets. We also investigated the self-

assembly of the 11 octahedron nets, since the regular octahedron is

the dual polyhedron for a cube; a dual polyhedron is one in which

the roles of faces and vertices are interchanged when compared

with the original polyhedron [21]. We recorded the number and

types of defects observed during each assembly over 68 trials for

each polyhedron. Although we observed that each net could fold

into a well-formed polyhedron, a clear trend emerged for the

number of defects in the assembly among the different nets. We

observed that the cruciform net actually did not provide the best

yields for assembling a cube. Also, there was a strong correlation

between the success of each net folding into the desired

polyhedron and purely geometric compactness factors, such as

the nature of the connectivity of the different panels in the net

design and a radius of gyration function.

Figure 1. Schematic diagram showing the self-assembly of a
cube from (A) six untethered panels and (B) six tethered
panels. Since the number of conformations is greatly restricted by
tethering as in (B), self-assembly occurs with much higher yield.
doi:10.1371/journal.pone.0004451.g001

Figure 2. Schematic diagram of the net geometry. The diagram
shows the (A) cube and (B) octahedron net geometry and illustrates the
different kinds of topological connections and hinges.
doi:10.1371/journal.pone.0004451.g002

Figure 3. Schematic diagram of all the eleven 2D (A) cube and
(B) octahedron nets.
doi:10.1371/journal.pone.0004451.g003
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Results and Discussion

We used a previously established procedure for fabricating the

200 and 500 mm cubes and octahedra on silicon wafers [12] (see

Materials and Methods); cube nets were processed across two

wafers, while all of the octahedron nets were processed on one

wafer. Each net was fabricated with nickel panels (square-shaped

for cubes and equilateral-triangular shaped for octahedra)

connected edgewise by solder hinges. The edges of each panel

featured hinges; internal hinges (along fold lines) connected two

panels, while external hinges were at the edges of the panels and

did not connect to other panels. Each panel measured either 200

or 500 mm on each side, and adjacent panels were spaced apart by

a width equal to 10% of the panel edge length. We electrodepos-

ited solder at the panel edges to form the hinges, released the nets

from the substrate and heated the structures until they folded at

the hinges to form polyhedra. The samples on each wafer were

constructed in close proximity to minimize any variations in the

dimensions during lithographic processing. The wafers were

organized such that a row of 11 nets was repeated multiple times.

Each net featured a characteristic pattern on all panels to

distinguish the polyhedra. Such an identification system was

necessary, since cubes and octahedra resulting from different nets

were assembled simultaneously to minimize any other process

variations. It should be noted that at sub-mm size scales, the role of

gravity in this self-assembling process is minimal [12]. Neverthe-

less, special care was taken in the design so that all of the panels on

all nets had the same mass. Following a lift-off process from the

substrate, the various nets were sorted, placed in random

orientations in a dish and heated until surface tension forces

drove them to fold into polyhedra. We folded the nets in batches,

such that representatives of each were present. We defined the self-

assembly of all the polyhedra in a dish as one trial and completed a

total of 68 trials each for the 200 mm cubes and the octahedra. We

also performed 36 trials each for 500 mm cubes and octahedra and

observed that the folding trends (discussed later) were similar.

For the cubes, we observed that each of the 11 nets folded by

one of two distinct pathways (Fig. 4 A–B). The first pathway

involved two clearly distinguishable sections of the net folding

independently at equal rates and then coming together when a

central hinge folded. The second folding pathway was character-

ized by different folding rates within the sections of the net. Nets 2,

4, 5, 7, 8, and 9 (Fig. 3) followed the first pathway; the remaining

nets followed the second pathway. Fig. S1 in the Supporting

Information section shows snapshots of all the 11 cube nets during

folding. Interestingly, folding of octahedra appeared to follow

more complicated pathways, and there were two possible final

conformations, either the non-convex boat-shaped octahedron or

the convex regular octahedron (Fig. 4 C–D). The formation of

non-convex and regular octahedra depended both on the type of

net as well as the folding sequence of the individual panels during

assembly; some nets formed both types of octahedra.

The data gathered from the assembly of 200 mm and 500 mm

polyhedra indicated that all of the nets, with varying levels of

defects (Fig. 5A–C), were capable of forming perfectly-folded

polyhedra (Fig. 5 D–E). We organized the self-assembled cubes

and octahedra into four categories (labeled A through D)

according to their defects. We could not discern any defects in

‘‘A’’ polyhedra using optical microscopy. They had well-aligned

faces and hinges that folded for form dihedral angles of 90u for

cubes (Fig. 5A) and 109.4u for octahedra. ‘‘B’’ polyhedra were

observed to have either one misaligned face (Fig. 4Bi, 4Biii) or

slightly (deviation,15u) under/overfolded faces. Underfolding

occurred when excess solder was present at a hinge between two

faces, and overfolding occurred when an inadequate amount of

solder was present in the hinge. ‘‘C’’ polyhedra were missing one

face, or were severely (deviation.15u) over/underfolded (Fig. 5Cii,

5Ciii). In some cases with cubes, we observed a twist deformation

and also classified those as ‘‘C’’ cubes (Fig. 5Ci). ‘‘D’’ polyhedra

had two or more of the defects described for ‘‘C’’ polyhedra.

Various other defects were observed in octahedra but not in cubes,

which were a result of the comparatively more complicated folding

mechanics; one common defect that occurred with the folding of

octahedron nets was the overfolding of several sides, resulting in a

tetrahedron (Fig. 5F) instead. Yields for cubes and octahedra are

plotted in Figure 6 and listed in Tables S1, S2, with average ranges

of ‘‘A’’ polyhedra plotted in Figure S2.

Five internal hinges along fold lines connect the six panels of each

cube net; we refer to these connections as edge connections (Fig. 2A).

Similarly, seven internal hinges are present along the fold lines and

connect (through edge connections) the eight panels of each

octahedron net (Fig. 2B). This method of identifying internal hinges

along fold lines is attractive since it can be readily extended to the

nets of other polyhedra. Vertex connections resemble topological

connections described in protein folding models [7]. Vertex

connections occur when panels are not directly connected to each

other but are proximal and oriented at a specified angle to each

other. There is one kind of vertex connection in the cube nets: when

panels are located diagonally to each other, they share one vertex

with an angle of 90u between the panels’ exterior sides. There are

two types of vertex connections in octahedron nets, as panels can be

oriented with their exterior sides forming angles of 120u or 180u
between them (Fig. 2B). A panel with no vertex connections to other

panels in a cube is a hanging panel and is connected to the rest of the

structure by only one edge connection. There are no hanging panels

in octahedron nets, because each panel has at least one vertex

connection. A more compact net results when each panel within the

net has more vertex connections.

We also used the radius of gyration, another common

parameter for determining compactness in protein structure, to

quantify the compactness in the nets [10]. We defined the radius of

gyration (Rg) as Rg~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i~1

xi{xð Þ2z yi{yð Þ2
h is

, where xi,yið Þ

Figure 4. Cube folding dynamics and octahedral conforma-
tions. Two distinct folding dynamics during self-assembly were
observed for cube nets: (A) net 5 follows pathway 1 and (B) net 3
follows pathway 2. Pathway 1 was characterized by independent
folding of two clearly distinguishable sections of the net, which came
together when the central hinge folded. Nets following pathway 2 have
different folding rates for different sections of the net. Octahedron nets
can fold into (C) non-convex boat-shaped or (D) regular octahedra.
doi:10.1371/journal.pone.0004451.g004

Compactness and Self-Assembly

PLoS ONE | www.plosone.org 3 February 2009 | Volume 4 | Issue 2 | e4451



is the center of mass of each panel, x,yð Þ is the center of mass of

the entire net, and N is the number of panels (see Tables S3, S4 in

Supporting Information). We consider nets with a lower Rg as

more compact.

We observed strong correlations between the geometrical

compactness of the 2D nets and the yields. Nets with more vertex

connections and lower Rg generated the most ‘‘A’’ polyhedra (Fig. 7).

We performed statistical analysis under the assumption that the two

factors were unrelated. Two-tailed t-tests were completed for

statistical significance to verify that the vertex connections and Rg

correlated to yields of cubes and octahedra. Our statistical tests

compared the percentages of ‘‘A’’ polyhedra to the corresponding

values (per net) of vertex connections and Rg for cubes and

octahedra independently. The p-values fell within the 0.001% range

dictated by the alpha value, which led us to conclude with 99.999%

confidence that vertex connections and Rg had statistical significance

in average yields of different nets. The statistical significance of the

unrelated factors further supports the hypothesis that net success in

self-assembly is strongly driven by both of these geometrical factors.

Our experimental results can be rationalized as follows. We

observed in both polyhedra that while panels folded first along

edge connections, vertex connections enabled panels to lock

together, thereby correcting for any errors in orientation. In fact,

we observed that before folding together as a whole, nets would

often undergo a period of solder readjustment and self-correction,

in which panels moved into their lowest-energy positions. Thus,

vertex connections enabled self-correction and enhanced defect

tolerance. We also observed that hanging panels introduced

defects in cube nets; however, hanging panels are not present in

any octahedron net. Nets with hanging panels followed the second

folding pathway, and the locking together of external hinges could

not occur. Moreover, the hanging panel, connected only to one

other panel by an internal hinge, needed to move a greater

distance than the other panels in order for the cube to form. This

extra movement also caused the side of the net with the hanging

panel to fold more slowly than the other nets. The increase in

motion of this hanging panel resulted in an increase in the error in

the placement of the face and thus decreased contact between

external hinges. Hence, cube nets with hanging panels tended to

result in large numbers of ‘‘C’’ cubes.

Furthermore, our inclusion of Rg as a factor for increasing yields

of ‘‘A’’ cubes and octahedra is supported by various studies in

biophysics. This function is related to the compactness of a

structure and has been widely utilized in polymer and protein

physics to quantify compactness of molecules [7–10]. These

theoretical protein folding studies have shown that compactness in

single polymer chains is a significant factor contributing to the

internal folded protein structure (i.e. compact chains significantly

increase secondary structure). It should be noted that several

similarities and differences exist between our experimental study

and the theoretical protein folding models. Our assembling

polyhedra are similar to protein folding in the sense that both

systems involve self-assembly and secondary interactions are

important in both self-assembling processes. It is known that in

the absence of secondary interactions between panels (i.e. in the

absence of external hinges), the yield of our self-assembly is

extremely low. However, it should be noted there are considerable

Figure 5. (A–C) Cubes and octahedra were classified according to the
following criteria. (Ai–iii) ‘‘A’’ cubes have no defects. (Bi, Biii) ‘‘B’’ cubes
may have one misaligned face, or display slight underfolding or
overfolding. (Ci–iii) ‘‘C’’ cubes are (Ci) severely twisted, (Cii) have a
missing or unfolded face, or (Ciii) have a severely misfolded/misaligned
face. (D) All 11 cube nets were capable of folding into ‘‘A’’ cubes. (E) All
11 octahedron nets were also capable of all self-assembling into ‘‘A’’
octahedra. There are two conformations of the folding of the
octahedron nets: the regular octahedron and the non-convex
octahedron (boat shape). A common defect observed in the folding
of octahedron nets was (F) a tetrahedron. All of these are 200-micron
scale structures.
doi:10.1371/journal.pone.0004451.g005

Figure 6. Distribution of defects in order of decreasing yield of
‘‘A’’ category (A) cubes and (B) octahedra. Violet denotes ‘‘A’’
category polyhedra; maroon denotes ‘‘B’’ category polyhedra; yellow
denotes ‘‘C’’ category polyhedra; and light blue denotes ‘‘D’’ category
polyhedra.
doi:10.1371/journal.pone.0004451.g006
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differences in size scales, geometry and complexity between the

two systems. Hence, while we believe this study may only offer

limited insight on protein folding, it lends evidence to the concept

that the principle of compactness may more universally impact the

defect tolerance and yield of self-assembling systems.

In conclusion, we have experimentally uncovered a strong

correlation between geometrical measures, namely compactness,

and yield of self-assembly; additionally, the measures are simple and

can be readily computed. Nevertheless, the reader should be

cautioned that the measures utilized may not be unique. We did

explore some other measures such as number and type of symmetry

elements; however, they did not provide good correlations to yield.

It should also be noted that it is extremely challenging to construct

such model experimental systems in which the influence of these

measures can be explored. However, these experimental studies are

essential for gaining insight into the underlying process of self-

assembly. Apart from being intellectually intriguing, the findings

could also enable the assembly of more complicated structures (e.g.

dodecahedra with 43380 nets) by allowing a priori selection of a

single net that might self-assemble with high yields.

Materials and Methods

Fabrication details
We followed previously published fabrication procedures [22] with

the differences that Shipley SC1827 photoresist [Rohm and Haas,

www.rohmhaas.com] and 1:6 diluted 351 Developer were used.

Radius of gyration calculations
We used original net drawings in Autodesk AutoCAD to find

the radii of gyration for all the cube and octahedron nets. The

radius of gyration is the root-mean-square (rms) distance of the

net’s panels from the center of mass of the entire net region, and

each net has an x-directional as well as a y-directional radius of

gyration. To find the radii of gyration we first drew an outline

around the shape, including hinge gaps, using the REGION

command. The coordinates for the center of mass for this region

was found using the MASSPROP command. We then found the

center of mass of each panel. In cube nets this was done by

drawing lines connecting the midpoints of sides opposite one

another for each panel and finding where the lines intersected, and

in octahedra nets we drew medians, connecting each vertex with

the midpoint of the opposite side, and found the coordinates of

their point of intersection. All nets were placed in the same

coordinate plane, with their centers of mass placed at the origin.

We then determined the x- and y- distances of the centroid of each

panel to the centroid of the region in order to calculate the radius

of gyration for the shape using the radius of gyration formula.

Supporting Information

Table S1 Yields for all 200-micron cube nets

Found at: doi:10.1371/journal.pone.0004451.s001 (0.05 MB

DOC)

Table S2 Yields for all 200-micron octahedron nets

Found at: doi:10.1371/journal.pone.0004451.s002 (0.05 MB

DOC)

Table S3 Rg for all 200-micron cube nets

Found at: doi:10.1371/journal.pone.0004451.s003 (0.03 MB

DOC)

Table S4 Rg for all 200-micron octahedron nets

Found at: doi:10.1371/journal.pone.0004451.s004 (0.03 MB

DOC)

Figure 7. Trends of yield vs compactness. (A–B) Scatter plots of the percentages of ‘‘A’’ cubes and octahedra as a function of the number of
vertex connections. (C–D): Scatter plots of the percentages of ‘‘A’’ cubes and octahedra as a function of Rg. The trend lines have the following R-
squared values. (A) y = 0.1478x20.0219, R2 = 0.74; (B) y = 0.063x20.2972, R2 = 0.74; (C) y = 20.0048x+1.7387, R2 = 0.49; (D) y = 20.0052x+1.4345,
R2 = 0.77.
doi:10.1371/journal.pone.0004451.g007
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Figure S1 Video snapshots during folding of each of the cube

nets. Two distinct folding dynamics were observed: nets 2, 4, 5, 7,

8 and 9 follow pathway 1 and the remaining nets follow pathway

2.

Found at: doi:10.1371/journal.pone.0004451.s005 (9.77 MB TIF)

Figure S2 Average yield of ‘‘A’’ category (A) cubes and (B)

octahedra over 12 wafer fragments. The values are ordered by

decreasing percentage of ‘‘A’’ polyhedra and the standard

deviation bars suggest the range of experimental variability.

Found at: doi:10.1371/journal.pone.0004451.s006 (6.84 MB TIF)
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