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Abstract
Cullin7 (CUL7) is a molecular scaffold that organizes an E3 ubiquitin ligase containing the F-box
protein Fbw8, Skp1 and the ROC1 RING finger protein. Dysregulation of the CUL7 E3 Ligase has
been directly linked to hereditary human diseases as cul7 germline mutations were found in patients
with autosomal-recessive 3-M and Yakuts short stature syndromes, which are characterized by
profound pre- and postnatal growth retardation. In addition, genetic ablation of CUL7 in mice resulted
in intra-uterine growth retardation and perinatal lethality, underscoring its importance for growth
regulation. The recent identification of insulin receptor substrate 1, a critical mediator of insulin and
insulin-like growth factor-1 signaling, as the proteolytic target of the CUL7 E3 ligase, provided a
molecular link between CUL7 and a well-established growth regulatory pathway. This result, coupled
with other studies demonstrating interactions between CUL7 and the p53 tumor suppressor protein,
as well as the simian virus 40 large T antigen oncoprotein, further implicated CUL7 as a novel player
in growth control and suggested pathomechanistic insights into CUL7-linked growth retardation
syndromes.
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The CUL7 E3 Ligase Targets Cyclin D1 and Insulin Receptor Substrate 1 for
Ubiquitin-Dependent Degradation

The turnover of intracellular proteins by the Ubiquitin (Ub)-Proteasome System (UPS) is a
precisely controlled process that regulates a broad spectrum of fundamental cellular functions,
ranging from cell cycle progression to signal transduction1. Central to the UPS is the
recognition of a substrate by an E3 Ub ligase, a step pivotal for initiating the ubiquitination
reaction that joins the target protein covalently with lysine 48-linked polyubiquitin chains,
thereby leading to its degradation by the 26S proteasome.

The cullin-RING complexes constitute the largest group of E3 ligases, which are characterized
by two signature components: a cullin (CUL) protein and the RING (for Really Interesting
New Gene) finger protein ROC1 (also termed Rbx1 or Hrt1)2. Cullins are molecular scaffolds,
capable of integrating both a molecule with substrate-targeting function, and the ROC1 RING
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domain for tethering an E2 Ub conjugating enzyme. In the prototypic SCF (Skp1·CUL1·F-box
protein-ROC1) complex, the CUL1 N-terminus binds to the Skp1·F-box protein substrate-
module, whereas the C-terminally located cullin domain anchors ROC1, which recruits Cdc34
and/or Ubc4/5 E2 conjugating enzyme to catalyze the transfer of Ub to the substrate protein.

Cullin7 (CUL7, also known as KIAA0076, p185, p193) is the seventh cullin family member
identified to date. It was initially isolated as a cellular protein bound to simian virus 40 (SV40)
large T antigen.3,4 As revealed by the subsequent work by Dias et al.5 and Arai et al.,6 CUL7
assembles an SCF-like E3 ligase complex composed of the adapter protein Skp1 (S-phase
kinase associated protein 1), ROC1 and the WD40 repeat-containing F-box protein Fbw8 (also
named Fbx29, Fbw6 or Fbxw8; see Fig. 1A and Table 1). To date, Fbw8 is the only F-box
protein known to bind to CUL7 via Skp1,5,7 underscoring the remarkable selectivity of this
cullin protein.

Recently, the CUL7 E3 Ub ligase has been implicated in the proteasomal degradation of two
cellular proteins: cyclin D1,8 and insulin receptor substrate 1 (IRS-1).9 Cyclin D1 is an
important to S-phase cell cycle progression and is subjected regulator of the G1 to considerable
posttranslational regulation (reviewed in ref. 10). The study by Okabe et al.8 demonstrated that
Fbw8, the substrate recognition subunit of the CUL7 E3 ligase, mediates the ubiquitination of
cyclin D1 in a manner that is dependent upon the phosphorylation of cyclin D1 residue T286
by the ERK2 MAP kinase. Conversion of T286 to alanine or knockdown of Fbw8, CUL1 or
CUL7 by RNAi resulted in the stabilization of cyclin D1 and prevented cell cycle progression
in a number of different cell types tested. However, it should be noted that Lin et al.11 identified
the SCFFBX4-αB-crystallin complex as an E3 ligase for the proteolytic turnover of cyclin D1, and
demonstrated the requirement for T286 phosphorylation by glycogen synthase kinase 3β for
degradation.

By employing a proteomic approach in search for Fbw8 interacting proteins, Xu et al.9
identified IRS-1 as a proteolytic target of the CUL7 E3 ligase. IRS-1 is a critical component
of the signaling pathways downstream of the insulin and insulin-like growth factor 1 (IGF-1)
receptor (reviewed in ref. 12). Upon receptor activation, IRS-1 is phosphorylated at multiple
tyrosine residues, and then recruits SH2 (Src homology 2)-containing adaptor proteins for the
activation of downstream Akt (via PI3K) and RAS/MEK/ERK (via Grb2/SOS) pathways (see
Fig. 2). Haruta et al.13 observed that IRS-1 was degraded during prolonged exposure to insulin,
in a manner that was sensitive to Wortmannin, a PI3K inhibitor, and to rapamycin, a
mammalian target of rapamycin (mTOR) inhibitor. It is now believed that the proteolytic
turnover of IRS-1 constitutes a negative feedback loop that restrains the magnitude and/or
duration of PI3K activation,14 via a mechanism requiring seryl phosphorylation of IRS-1 by
mTOR and its effector kinase S6K (whose activities are stimulated by the PI3K/Akt cascade;
see Fig. 2) (reviewed in refs. 14–16).

The study by Xu et al.9 demonstrated that Fbw8 binds to IRS-1 and promotes its ubiquitination
and proteasomal degradation, and that inactivation/deletion of Fbw8 and CUL7, respectively,
accumulated IRS-1. Moreover, Fbw8-induced degradation of IRS-1 was dependent upon
mTOR activity and may be mediated by multiple mTOR/S6K target serine residues on IRS-1.
Thus, the CUL7 E3 appears to be responsible for mediating mTOR-dependent degradation of
IRS-1, thereby functioning as a critical component of the mTOR/IRS-1 negative feedback loop
(reviewed in ref. 17), which fine-tunes the PI3K activity in accordance with the magnitude and
duration of mTOR/S6K activities.

In support of this, embryonic fibroblasts of CUL7−/− mice were found to accumulate IRS-1
and exhibit increased activation of IRS-1 downstream pathways Akt and MEK/ERK.9
However, despite the over-activation of these pro-mitogenic signaling pathways, CUL7−/−
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mouse embryonic fibroblasts (MEFs) grew poorly with an increased population of cells
arrested in G1-phase. Furthermore, the CUL7−/− MEFs exhibited upregulation of distinct tumor
suppressors that included p16 and hypo-phosphorylated retinoblastoma protein (pRb), a large
flat morphology and high levels of β-galactosidase activity, all of which are characteristic
features of cells undergoing senescence.

It should be noted that previous studies have implicated a role for the SOCS-containing E3
ligases in IRS-1 degradation,18 raising the intriguing possibility that multiple E3 Ub ligases
may participate in the proteolytic regulation of IRS-1 in response to cellular and environmental
cues.

CUL7 may be Associated with Multiple Non-Proteolytic Functions
In comparison with canonical cullin family members (CUL1-5), CUL7 exhibits several
atypical features. Composed of 1698 amino acids in humans, CUL7 is of substantially large
size. In addition to the highly conserved cullin domain, it contains two distinct motifs: a DOC
domain (similar to the DOC1 of the APC/C),19 and a CPH domain (conserved domain in
CUL7, PARC and HERC2 proteins)20 (Fig. 1B). Finally, CUL7 appears to be present only in
higher eukaryotes (vertebrates), suggesting a late phylogenetic origin.5 Intriguingly, CUL7
was found to mediate interactions with several proteins in a manner that is independent of Fbw8
and that does not affect the stability of the associated proteins (see Table 1), suggesting that
the CUL7 E3 ligase may exert both proteolytic (Fbw8-related) and non-proteolytic effects.

NMR studies revealed a direct binding of CUL7 to p53 and showed that the evolutionarily
conserved CUL7 CPH domain is the predominant p53 binding site.20 On p53, the interaction
surface was mapped to the tetramerization domain. Given that the oligomerization state of p53
affects both its transcriptional activity and subcellular localization, it was proposed that CUL7
might control p53 function by binding preferentially to the active, tetrameric forms of
p53.20 At present there is no experimental evidence that the CUL7 E3 ligase participates in
the proteolytic degradation of p53: under conditions in which MDM2 promoted the formation
of high molecular weight species of p53-Ub in vitro, CUL7 supported only the mono- and di-
ubiquitination of p53.21,22 In addition, no accumulation of p53 protein was detected in cells
depleted of CUL7 by RNAi,22 or in the CUL7−/− MEFs.23 However, one study reported the
upregulation of p53 protein level in SHEP N-Myc cells depleted of CUL7.24 Interestingly,
experimental evidence suggests that the CUL7-p53 interaction may contribute to
transcriptional regulation: while CUL7 appears to repress p53 in a luciferase reporter assay,
22 p53 seems to be required for upregulation of CUL7 at both mRNA and protein levels after
DNA damage induced by etoposide.21

It remains an open question whether CUL7 contributes to p53-dependent apoptosis. Initially,
Tsai et al.4 identified a putative BH3 domain in the C-terminus of CUL7 (p193), suggesting
that CUL7 might belong to the BH3-only family of pro-apoptotic proteins. It was shown that
forced expression of CUL7 in NIH-3T3 cells promoted apoptosis in a manner that was
dependent on the integrity of the BH3 domain. Moreover, expression of SV40 large T antigen
or Bcl-xL, an antagonist of BH3-only proteins, prevented apoptosis.4 However, given the
proximity of this putative BH3 motif with the C-terminally located cullin domain, future work
is required to determine whether CUL7’s cullin domain plays a role in apoptosis. Notably,
expression of a CUL7 C-terminal truncation mutant with presumptive dominant interfering
activity (designated CUL7 1152 stop) was found to confer resistance to MG132- and etoposide-
induced apoptosis in U2OS cells, independent of CUL7’s interaction with p53 or PARC.25
However, a recent report by Kim et al.,24 identified CUL7 in a functional screen for inhibitors
of Myc-induced apoptosis, showing that expression of CUL7 prevented both c-Myc and N-
Myc mediated apoptosis and promoted the transformation of neuroblastoma SHEP cells in a
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p53-dependent manner. Further studies are thus needed to dissect the relative roles of CUL7
as a regulator of apoptosis in various cell types and tissues.

It has been more than a decade since the CUL7 protein was reported to bind to SV40 T antigen.
3,4 SV40 is a member of the polyomaviridae family of DNA viruses capable of inducing tumors
in rodents. Owing to the ability of T antigen to transform and immortalize mammalian cells in
culture, studies using this oncoprotein yield important insights into the mechanisms of
transformation. For instance, it is well documented that T antigen interacts and inhibits both
p53 and pRb family proteins, thereby disabling critical cellular tumor suppressive mechanisms
(reviewed in ref. 26). DeCaprio and colleagues demonstrated that the association between T
antigen and CUL7 is a requirement for SV40 transformation.27 This observation is in
agreement with an earlier study that demonstrated that co-expression of both dominant
interfering CUL7 1152 stop and dominant interfering p53 were required for E1A-mediated
transformation of embryonic stem cell-derived cardiac myocytes28 (unlike T antigen, the E1A
viral oncoprotein lacks CUL7 and p53 binding activity). Interestingly, transgenic mice
expressing CUL7 1152 stop in the myocardium exhibited enhanced cardiomyocyte
proliferation following myocardial infarction,29 which was sufficient to block adverse post-
infarction ventricular remodeling. These results are consistent with a CUL7-mediated role in
cell cycle progression, although the precise mechanistic underpinnings remain unclear.

T antigen deletion analyses mapped the CUL7 interaction region to a N-terminal motif
spanning residues 69 to 83. Moreover, the transformation potential of the T antigenΔ69–83

mutant was significantly reduced.27 However, this mutant could transform cells depleted of
CUL7, suggesting that T antigen might neutralize a function of CUL7 that protects against
cellular transformation.27 A recent study by Zhao et al.30 suggested that the CUL7-T antigen
interaction may be required for the degradation of the Mre11-Rad50-Nbs1 complex, which
plays a critical role in DNA damage response pathways. It is possible that T antigen may recruit
the CUL7 E3 ligase to mediate degradation of cellular proteins for viral propagation. It remains
to be investigated whether other non-proteolytic partners of CUL7 (Table 1) influence the
CUL7 proteolytic function by regulating the interactions between the E3 and targets, and/or
the catalytic efficiency of ubiquitination.

CUL7 is a Novel Regulator of Growth
Two recent studies have independently linked mutations of the cul7 gene to hereditary growth
retardation syndromes in humans. Cormier-Daire and colleagues identified 25 cul7 germline
mutations in patients with 3-M syndrome, an autosomal-recessive disorder characterized by
pre- and postnatal growth retardation, facial dysmorphism and skeletal anomalies (Table 2).
31 Of these mutations, 19 predict premature termination of translation, with a majority
implicated for loss of the functional cullin domain (see Fig. 1B). More recently, Maksimova
et al.32 identified 43 patients from 37 Yakuts families, a geographically isolated ethnic group
in Russia, with a short stature syndrome similar to 3-M syndrome (Table 2). A novel mutation
in the cul7 gene, 4582insT, was found in all these families, and is predicted to produce a
truncated protein terminating at amino acid 1553 (see Fig. 1B).

In line with the human hereditary syndromes, targeted disruption of the cul7 gene in mice
resulted in severe intrauterine growth retardation (IUGR) with significantly smaller fetuses at
later gestational stages and placenta anomalies (see Table 3). Interestingly, disruption of other
cullin family members resulted in early embryonic lethality (<E7.5),33–36 while CUL7
knockout mice develop anomalies in later gestational stages (>E12.5). Deletion of the fbw8
gene in mice yielded a similar phenotype as CUL7−/− (see Table 3).7,37 However, while
CUL7−/− mice succumb neonataly due to respiratory distress, disruption of the fbw8 gene
resulted in a less severe phenotype with abnormalities mainly restricted to the placenta and
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growth. Approximately 30% of the homozygous Fbw8−/− offspring reached adulthood, albeit
displaying body sizes smaller than their wild-type littermates throughout postnatal
development. Clearly, these findings establish overlapping function of CUL7 and Fbw8 in
growth control, suggesting that CUL7 requires Fbw8 for executing its major growth-regulatory
activity. However, the more severe phenotype of the CUL7−/− mice implicates that CUL7 may
possess functions that are independent of Fbw8. Of note, impaired proliferation kinetics were
observed with the CUL7−/− and Fbw8−/− MEFs, suggesting that both histopathological and
cell autonomous effects contribute to the pathogenesis of the CUL7-associated growth
retardation syndromes.

cul7 is located on human chromosome 6p21.1. In humans, CUL7 mRNA is expressed in various
fetal and adult tissues, with highest transcript levels found in fetal kidney and placenta, as well
as adult skeletal muscle, heart and pancreas.31 High levels of CUL7 mRNA were found in
mouse testes.4 It was revealed that transcript levels of Fbw8 were most abundant in mouse
placenta and skeletal muscle, especially of the abdominal walls, diaphragm and intercostal
space.7 It remains to be investigated whether and how the expression profile of CUL7 and
Fbw8 is correlated with the activity of this E3 ligase.

Possible Pathomechanisms for CUL7-Linked Growth Retardation
Syndromes

How might the loss of CUL7 function contribute to growth retardation? Given that genetic
disruption of either CUL7 or Fbw8 in mice profoundly impaired placental and embryonic
development, as well as proliferation kinetics in embryonic fibroblasts, and given that short
stature is the predominant clinical feature of patients with 3-M and Yakuts syndromes, it is
tempting to speculate that diminished proteolytic function of the CUL7 E3 ligase is the
principal pathogenic mechanism. In support of this notion, biochemical characterization of a
subset of 3-M derived CUL7 mutations in vitro provided direct evidence for a reduced
ubiquitination activity.31 The finding that IRS-1 is a proteolytic target of the CUL7 E3 is
particularly intriguing, as altered activity of the IGF-1 pathway in patients with loss-of-function
mutations in the Igf-138 or Igf-1 receptor39–41 gene has also been linked to severe growth
retardation defects (Table 2, reviewed in ref. 42). Mouse knockout studies are in agreement
with the prominent role for IGF-1 signaling in growth (see Table 3). IGF-1 and IGF-1 receptor
(IGF-1R) knockout mice exhibited birth weights only 60% and 45% of the wild type animals,
respectively.43–45 Similar to the CUL7−/− mice, IGF-1R knockout mice died soon after birth
of respiratory failure.45 Moreover, ablation of the IRS-1 gene resulted in small, insulin-
resistant mice.46,47 In addition, Cho et al.,48 showed that mice deficient in Akt1, an isoform
of Akt downstream of IGF-1/PI3K (Fig. 2), exhibited both pre- and postnatal growth
impairment, with significantly reduced body size.

One possible pathogenic mechanism for the CUL7-linked growth retardation comes from
studies with the CUL7−/− MEFs. It was observed that while the CUL7−/− MEFs exhibited high
levels of IRS-1 and concomitantly, enhanced PI3K/Akt and RAS-MAPK pathways, these cells
grew poorly and displayed typical features of oncogene-induced senescence9 (OIS). It was,
therefore, proposed that accumulation of IRS-1 due to a dysfunctional CUL7 E3 ligase, triggers
OIS, which in turn might contribute to the growth retardation phenotype observed in patients
with 3-M/Yakuts syndromes.

OIS is a tumor suppressive program that is initiated upon sustained oncogenic signaling to
prevent malignant transformation (reviewed in refs. 49–51). Melanocytic nevi (moles) are a
well-characterized example of OIS in cancer biology. Nevi are common benign skin tumors,
80% of which harbor the identical B-Raf (V600E) mutation, which is present in the majority
of malignant melanomas. It was revealed that nevi displayed OIS phenotypes, thereby
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suggesting a role for OIS in preventing melanocytic nevi to progress into a malignant state.
52–55 Of particular interest, several components in IRS-1 downstream signaling pathways
proved capable of inducing OIS: gain-of-function mutation of Ras (V12),56 B-Raf (V600E)
55 and MEK,57 as well as constitutive activation of the PI3K/Akt pathway through depletion
of the negative regulator Phosphatase and Tensin homolog (PTEN),58 or transgenic
overexpression of Akt,59 respectively. Interestingly, several hereditary short stature
syndromes such as Noonan-, Costello- or LEOPARD syndrome are linked to gain-of-function
mutations of the Ras-Erk MAPK pathway (Table 2; reviewed in ref. 60). Of note, previous
studies have linked premature senescence to Werner syndrome, which is associated with short
stature as a main clinical feature (reviewed in ref. 61). Future investigations are required to
determine whether high levels of IRS-1 are sufficient to initiate OIS, and whether senescence
is a contributing factor to the pathogenesis of growth retardation observed in 3-M/Yakats
dwarfism syndromes.

A second hypothetical pathomechanism is based on the increased expression of IGF-1 binding
proteins (IGFBP) found in the CUL7−/− and Fbw8−/− MEFs.7 It is well established that the
vast majority of IGF-1 molecules in the extracellular compartment are complexed with IGFBP,
and that IGFBP-bound IGF-1 exhibits altered activity (reviewed in ref. 62). Several lines of
evidence link IGFBPs to the pathogenesis of IUGR: transgenic overexpression of IGFBP-1
and -2 were sufficient to cause fetal growth restriction in transgenic mice (see Table 3).63–
65 Moreover, newborns with IUGR were found to have high IGFBP-1 levels that negatively
correlated with IGF-1 availability and fetal growth.66 Pathways downstream of IRS-1 such as
PI3K/Akt and Erk were reported to increase the expression and secretion of IGFBPs, thereby
possibly constituting a negative feedback loop on IGF-1 signaling.67–69 Conceivably,
aberrant accumulation of IRS-1 in the CUL7−/− MEFs might trigger the upregulation of
IGFBPs, leading to the specific inhibition of IGF-1 receptor signaling. However, IUGR is a
complex clinical condition that can result from multiple maternal, fetal and placental
dysfunctions (reviewed in ref. 70). It remains to be determined whether the CUL7 E3 ligase
(either directly or indirectly) targets additional factors in the IGF-1 signaling network, and/or
in other growth-regulatory pathways, thereby further contributing to the pathogenesis of IUGR.

Is CUL7 a Tumor Suppressor or an Oncogene?
Paradoxically, recent studies have associated CUL7 with these two apparently opposing
activities. By using a SV40 T antigen model, DeCaprio and co-workers have identified a
potential tumor suppressive role for CUL7 in viral transformation.27 In addition, the mTOR/
IRS-1 negative feedback loop was linked to the inhibition of malignancy in cells where mTOR
is hyper-activated such as hamartoma syndromes. Intriguingly these syndromes are typically
benign, rather than malignant (reviewed in ref. 71; see Table 2), and it was proposed that the
mTOR/IRS-1 negative feedback loop plays a critical role in restraining PI3K activity, thereby
halting the progression to malignancy.72–74 Such a tumor suppression activity might be
mediated, at least in part, by the CUL7-mediated targeted degradation of IRS-1. On the
contrary, by employing a Myc-induced apoptosis system, Penn and colleagues revealed a
growth-promoting function of CUL7, and presented in silico evidence for upregulated CUL7
mRNA level in non-small cell lung carcinoma.24 While further investigations are required to
resolve the “tumor suppressor or oncogene” conundrum, it would not be surprising if CUL7
proved to play both growth promoting and suppressive roles in a context-dependent manner.

Concluding Remarks
As discussed above, the CUL7 E3 ligase is implicated in multiple biological functions,
including pre- and postnatal growth, cellular senescence, cell cycle regulation, apoptosis and
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transformation by SV40 T antigen (see Fig. 3). Presumably, execution of these biological
functions requires both proteolytic and non-proteolytic activities of the CUL7 E3 ligase.

How does CUL7 function as a unique molecular scaffold by interacting with Skp1-Fbw8
selectively, and by mediating interactions with multiple proteins of both cellular and viral origin
(Table 1)? Is it possible that CUL7 “evolves” from CUL1 to assemble an E3 ligase, specifically
contributing to complex growth regulatory pathways, such as IGF-1 signaling, demanded by
higher organisms? Insights into these questions require structural resolution of the CUL7 E3
ligase and comparison with the previously resolved structures of canonical cullin-based E3s.
Structure-based studies will also be critical to reveal the molecular details that govern the
interactions between the CUL7 E3 and targets, or its modulator(s), thereby producing
information crucial for development of therapeutic and pharmaceutical agents, amenable for
both function studies and treatment of human diseases.

Finally, it remains to be explored whether CUL7 has a role in insulin signaling, which
potentially impacts insulin resistance and therefore, diabetes. Clearly, given its critical role in
growth and association with multiple cellular growth-regulatory pathways, the CUL7 E3 ligase
has emerged as an exciting new branch of Ub research.
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Abbreviations
CUL7  

cullin7

Ub  
ubiquitin

SCF  
Skp1·CUL1· F-box protein

IRS-1  
insulin receptor substrate 1, growth factor 1

IGF-1R  
IGF-1 receptor

UPS  
Ub-proteasome system

IUGR  
intrauterine growth retardation

OIS  
oncogene induced senescence

SV40  
simian virus 40
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mTOR  
mammalian target of rapamycin

MEF  
mouse embryonic fibroblast

IGFBP  
IGF-1 binding protein
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Figure 1.
(A) Composition of the CUL7 E3 Ub ligase complex. The CUL7 protein assembles an SCF-
like complex composed of Skp1, Fbw8 and ROC1. While Fbw8 is responsible for substrate
protein recognition, ROC1 recruits an Ub-charged E2 Ub-conjugating enzyme for substrate
ubiquitination. It remains to be determined how CUL7 binds to the Skp1-Fbw8 heterodimer.
(B) Domain organization of the CUL7 protein, as well as localization and relative frequency
of CUL7 mutations identified in patients with 3-M (upper half) and Yakuts Short Stature
syndrome (lower half). A single mutation (4582insT) of the CUL7 gene, predicted to yield a
protein truncated at amino acid position 1553, was found in 43 patients of 37 families with
Yakuts short stature syndrome. N8, abbreviation for Nedd8, denotes the CUL7 C-terminal site
containing sequence conserved for cullin neddylation, as described previously.75

Sarikas et al. Page 13

Cell Cycle. Author manuscript; available in PMC 2009 February 6.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Role of IRS-1 in insulin and IGF-1 signaling. Upon ligand binding to the receptor, IRS-1 is
recruited to the receptor and phosphorylated on tyrosine residues, which serve as docking sites
for adaptor proteins of the PI3K/Akt pathway or Ras-Erk MAPK pathway. Akt signaling is
restrained by a negative feedback loop via mTOR and its effector serine/threonine kinase S6K.
Phosphorylation of multiple serine residues on IRS-1 by mTOR/S6K may create a
phosphodegron required for CUL7 E3 ligase-mediated ubiquitination and proteasomal
degradation.
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Figure 3.
Biological functions of the CUL7 E3 Ub ligase. As described in the text, the CUL7 E3 is
associated with multiple biological functions. Studies on 3-M/Yakuts short stature
syndromes31–32 as well as with mouse knockouts of CUL7/Fbw8,6,7,37 revealed a prominent
role for this E3 in growth control. Moreover, CUL7−/− mouse fibroblasts exhibit senescence
phenotype.9 Using the SV40 T antigen model system, it was observed that the CUL7
interaction with T antigen is required for vial transformation.27 Given its ability to target cyclin
D1 for degradation,8 the CUL7 E3 may have a role in cell cycle control. In addition, CUL7
was shown to bind to p53.20–25 The CUL7 E3 appears to be able to regulate apoptosis in both
p53-dependent24 or independent4 manner. Recent studies have also implicated a role for DNA
damage in regulating the p53-CUL7 interactions.21 Finally, CUL7-mediated cell cycle effects
have been implicated in cardiac repair.28,29
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Table 1
CUL7 interacting proteins

CUL7-interacting proteins Comments Ref.

•The CUL7 E3 components 5, 6

 •Skp1 • adaptor capable of tethering the F-box domain and CUL1

• how CUL7 binds to Skp1-Fbw8 remains to be determined

 •Fbw8 • WD-40 repeat-containing F-box protein

• targets cyclin D1 (8) and IRS-1 (9) for degradation

8, 9

 •ROC1 • RING finger protein capable of recruiting an E2 conjugating enzyme for
Ub catalysis

• binds to the CUL7 cullin domain

•Other interacting proteins

 •CUL1 • CUL1 forms a heterodimeric complex with CUL7 in a Fbw8-dependent
manner

37

 •PARC • contains cullin, DOC and CPH domains, 60% homologous to CUL7

• CUL7-interacting domains unknown

• the significance of the interaction with CUL7 remains to be determined

23, 76

 •Glomulin (Fap68) • binds to the C-terminus of CUL7

• the significance of the interaction with CUL7 remains to be determined

6

 •p53 • CUL7 CPH domain binds to the p53 tetramerization domain (20)

• enhanced p53-CUL7 interaction by etoposide-induced DNA damage (21)

• CUL7 promotes mono- and di-ubiquitination of p53, but not
polyubiquitination

• CUL7 represses p53-dependent transactivation activity (22)

20–22

 •SV40 T antigen • CUL7-T antigen interaction is required for SV40 transformation (27)

• CUL7-T antigen interaction is mediated by the T antigen motif spanning
amino acids 69 83 (27)

• CUL7 was originally termed p185 (3) or p193 (4), when discovered for
interactions with T antigen

3, 4, 27
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Table 3
Mouse models of CUL7 and Fbw8, as well as genes of function in the IGF-1/IRS1 pathways

Gene Model Phenotype/observations Ref.

CUL7 KO • fetal growth retardation in later gestational
stages (>E12.5)

• pulmonary anomalies (atelectic lungs,
reduced alveolar space)

• 100% of
homozygous
offspring died at
birth due to
respiratory
failure and
cyanosis

• dermal and
hypodermal
hemorrhages in
the lower hip

6

Placenta:

• reduced size in later gestational stages
(>E12.5)

• abnormal spongiotrophoblast
development: smaller decidua and
spongiotrophoblast layer, fewer secondary
trophoblast giant cells

•smaller materal vessel area in
the labyrinth layer

Mouse embryonic fibroblasts: reduced proliferation
rate in culture

FBW8 KO • fetal growth retardation in later gestational stages
(>E12.5)• 70% of Fbw8−/− offspring died at birth of
unknown cause, 30% survived but remain smaller
throughout adulthood

•no hemorrhages 7, 37

Placenta:

• reduced size in later gestational stages
(>E12.5)

• abnormal spongiotrophoblast layer,
decidua and trophoblast giant cells not
affected

•smaller maternal vessel area
in the labyrinth layer

Mouse embryonic fibroblasts: reduced proliferation
rate in cell culture

IGF-1R KO • 100% of homozygous offspring died at
birth due to respiratory failure and
cyanosis; size and weight at birth <45% of
wild type

• generalized organ hypoplasia (including
the muscles and skin), anomalies of the
nervous system; delayed ossification

• placental development not affected*

45

IGF-1 KO • >95% of homozygous offspring die at birth
due to respiratory failure and cyanosis; size
and weight at birth <60% of wild type

• <5% of IGF-1−/− mice survived birth, but
remained smaller throughout life with
abnormal development of muscle,
reproductive organs (infertility),
ossification and skin.

• placental development not affected*

43–45

IRS-1 KO •growth retardation of the fetus in later gestational
stages (>E15.5), remain 50 60% smaller throughout
adulthood.

46–47
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Gene Model Phenotype/observations Ref.

•no organ abnormalities, fertile •insulin resistant

IGFBP-1 TG • reduced body size and weight

• generalized organ hypoplasia with
exception of brain and spleen

•fasting hyperglycemia 63

IGFBP-2 TG • reduced body size and weight •fasting hypoglycemia 64

Abbreviations: KO = knockout; TG = transgenic mouse model; IGF-1R = IGF-1 receptor.

*
despite mice deleted of IGF-1 or IGF-1R revealed no significant changes in placental development, emerging evidence points to a critical role of the

IGF system in this process throughout gestation (reviewed in ref. 77). Placenta weight was positively correlated with cord blood level of IGF-1 and

-2,78,79 and human placenta explant studies demonstrated a key role of IGF-1 and -2 in promoting cytotrophoblast proliferation and differentiation to

synzytiotrophblast cells.80
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