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The life expectancy implied by current age-specific mortality rates
is calculated with life table methods that are among the oldest and
most fundamental tools of demography. We demonstrate that
these conventional estimates of period life expectancy are affected
by an undesirable ‘‘tempo effect.’’ The tempo effect is positive
when the mean age at death is rising and negative when the mean
is declining. Estimates of the effect for females in three countries
with high and rising life expectancy range from 1.6 yr in the U.S.
and Sweden to 2.4 yr in France for the period 1980–1995.

When a group of persons is observed from birth to death,
mean lifetime may be calculated simply and directly as

mean age at death. This statistic is problematic, however, for
studying trends in mean lifetime. Mean lifetime for Swedish
females born in 1850, for example, reflects mortality conditions
from the mid-19th to the mid-20th centuries, a period of
historically unprecedented increases in human survival. The
study of these changes requires a different approach.

Period life expectancy at birth calculated by life table methods
has been the standard solution to this problem since the mid-19th
century (1). This paper argues that it is an imperfect solution,
because life expectancy at birth calculated in this way is distorted
whenever it is changing.

Conventional life expectancy depends solely on the force of
mortality function for time t. We propose an alternative measure
that depends both on the force of mortality function and on the
rate of change in the standardized mean age at death. Our
alternative is based on the assumption that the observed force of
mortality function at any given time has the same shape as the
force of mortality function inherent in the standardized popu-
lation age distribution at time t, which reflects the history of
mortality in the population. We demonstrate that this assump-
tion is realistic in contemporary societies with high life expect-
ancy and also that the proposed measure is consistent with
well-established measures used in other demographic contexts.

Methods
Cohort Mean Lifetime. The distribution of lifetimes for a group of
persons born during any given time period (a ‘‘birth cohort’’)
may be described in three different ways. The survival function,

l�a�, a � 0, [1a]

gives the proportion of individuals who survive to exact age a. It
is nonincreasing, with l(0) � 1.0 and l(�) � 0 for some advanced
age �. The death density function,

d�a� �
��l�a�

�a
, [1b]

gives the distribution of deaths by age. The force of mortality
function,

��a� �
d�a�

l�a�
�

��l�a���a
l�a�

, [1c]

gives the risk of dying at each age. These functions are formally
equivalent in the sense that any two may be derived from the

third. The force of mortality function �(a) may be derived from
d(a) or l(a) by using Eq. 1c, for example, and l(a) may be derived
from �(a) or d(a) by using

l�a� � �
a

�

d�x�dx � exp���
0

a

��x�dx� . [1d]

Fig. 1 plots l(a), d(a), and �(a) for the cohort of females born in
Sweden in 1850. The survival function declines to zero at around
age 100 yr. The density function is broadly bimodal with peaks
at age 0 and �80 yr. The force of mortality exhibits a U-shaped
pattern with a minimum at about age 10. Note the use of the log
scale to accommodate the large differences in magnitude at
different ages. These patterns are broadly typical, although levels
of mortality vary widely between populations and over time.

Mean lifetime for a birth cohort, M, may be calculated from
l(a) as

�
0

�

l�a�da, [2a]

from d(a) as

�
0

�

ad�a�da, [2b]

or from �(a) as

�
0

�� exp���
0

a

��x�dx��da . [2c]

These formulas give identical results. For the 1850 cohort of
Swedish females, for example, we calculate M � 48.1 yr from each.

Period Mean Lifetime. Let

l�a, t� � lt�a�a�, [3a]

d�a, t� � dt�a�a�, and [3b]

��a, t� � �t�a�a�, [3c]

where the subscripts at right indicate time of birth. Thus l(a, t)
denotes the proportion of persons born at time t � a who are
surviving at time t; d(a, t) denotes the density of deaths for this
cohort at age a and time t; and �(a, t) denotes the corresponding
force of mortality. Note that l(a, t) and d(a, t) differ from the
survival and density functions for synthetic cohorts obtained
from conventional period life tables, and that their calculation
requires data on either past births and migrations or on past
deaths.

See accompanying Biography on page 13125.
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We refer to l(a, t) as the standardized population age distri-
bution at time t and to d(a, t) as the standardized age distribution
of deaths at time t. The standardized population age distribution
and age distribution of deaths are the same as their unstand-
ardized counterparts in any population that experiences constant
numbers of births over time.

By analogy with Eq. 2, mean lifetime at time t may be
calculated as

M1�t� � �
0

�

l�a, t�da, as [4a]

M2�t� �

�
0

�

ad�a, t�da

�
0

�

d�a, t�da

, or as [4b]

M3�t� � �
0

�

exp���
0

a

��x, t�dx�da. [4c]

Each of these formulas has been used in demography to calculate
period mean age for some demographic event. Mean age at first

marriage is often calculated as a variant of M1(t) that allows for
persons not marrying. This is the singulate mean age at marriage
introduced by Hajnal (2), with l(a, t) taken as the proportion of
single persons at age a at time t (see, for example, ref. 3). Mean
age at childbearing is generally calculated as M2(t), with age-
specific or age-order-specific birth rates substituted for d(a, t)
(see, for example, ref. 4). Life expectancy at birth, denoted e0(t),
is conventionally calculated as M3(t).

We refer to M2(t) as the standardized mean age at death. The
unstandardized mean age at death is unacceptable as a measure
of mean lifetime, because it may be heavily distorted by the
population age distribution. This objection does not apply to the
standardized mean age at death, which might be a widely used
measure of period mean lifetime if it were more easily calculated.

If l(a, t) is constant with respect to t, the three means defined
by Eq. 4 are identical. When length of life changes, the three
means diverge. The following sections develop relationships
among them.

Results
Relation Between M1 and M2. To establish a simple relationship
between M1(t) and M2(t), let

ds�a, t� �
��l�a, t�

�a
and �s�a, t� �

ds�a, t�
l�a, t�

. [5a, b]

The age schedules ds(a, t) and �s(a, t) are inherent in the
standardized population age distribution at time t. They may be
interpreted as the age distribution of deaths and the force of
mortality function in the stationary population whose age dis-
tribution is given by l(a, t), with l(0, t) � 1 for all t. This
interpretation is, of course, valid only if the mortality history of
the population is such that l(a, t) is a nonincreasing function of
a (dl(a, t)�da � 0).

Assume now that for t in the time interval [0, �], there exists
a function p(t) independent of age, such that

��a, t� � p�t��s�a, t� or, equivalently, [6a]

d�a, t� � p�t�ds�a, t�, [6b]

and that the function p(t) is a real valued integrable function
bounded below by 0. We refer to this as the proportionality
assumption.

The proportionality assumption implies that the age schedules
of �(a, t) and d(a, t) are the same in shape (but not necessarily
level) as the age schedules of �s(a, t) and ds(a, t). As will be
shown below, this assumption provides a good approximation for
patterns of adult mortality in contemporary countries with high
life expectancy.

From Eqs. 4a and 5a,

M1�t� � �
0

�

l�a, t�da �

�
0

�

ads�a, t�da

�
0

�

ds�a, t�da

, [7a]

and from Eqs. 4b and 6b,

M2�t� �

�
0

�

ap�t�ds�a, t�da

�
0

�

p�t�ds�a, t�da

. [7b]

Fig. 1. Mortality experience of the cohort of Swedish females born in 1850,
as summarized by the survival function, l(a) (A), the death density function d(a)
(B), and the force of mortality function �(a) (C).
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On cancellation of the proportionality factor p(t), Eq. 7b be-
comes Eq. 7a, thus proving that M1(t) � M2(t).

Other Implications of the Proportionality Assumption. It is shown in
Appendix 1 that if the proportionality assumption holds, then

p�t� � 1 �
�M1�t�

�t
. [8a]

Substituting this in Eq. 6 and noting that M1(t) � M2(t) yields

��a, t� � �1 �
�M2�t�

�t ��s�a, t�, [8b]

d�a, t� � �1 �
�M2�t�

�t �ds�a, t� . [8c]

This shows that �(a, t) and d(a, t) are functions of the rate of
change in the standardized mean age at death M2(t), because
�s(a, t) and ds(a, t) are determined by mortality conditions up to
time t. When this mean age is rising, �(a, t) � �s(a, t) and
d(a, t) � ds(a, t), but when it is declining, �(a, t) 	 �s(a, t) and
d(a, t) 	 ds(a, t).

As shown in Appendix 2, the proportionality assumption also
implies that the age schedule l(a, t) shifts uniformly to older

(younger) ages as the mean age at death rises (falls). Uniform
shifting between time 0 and time T means that there is a function
F(t) � M1(t) � M1(0), giving the magnitude of the shift between
time 0 and time t, such that, for all 0 � t � T,

l�a, t� � l�a � F�t�,0� for all a � F�t�, [9]

and l(a, t) � 1 for a � F(t). Downward as well as upward shifts
are possible, provided that l(a, t) � 1 for a less than some
number 	 0.

It follows from Eq. 5 that uniform shifts in l(a, t) imply
uniform shifts in �s(a, t) and ds(a, t) with the same shift function
F(t), with �s(a, t) � ds(a, t) � 0 when l(a, t) � 1. The propor-
tionality assumption is therefore equivalent to the shifting
assumption made by Bongaarts and Feeney (5).

Changes over time in the schedules �(a, t) and d(a, t) are of
two types. First, as the mean age at death rises or falls, �(a, t) and
d(a, t) shift to higher or lower ages with l(a, t), �s(a, t), and
ds(a, t). Second, �(a, t) and d(a, t) are deflated or inflated
relative to �s(a, t) and ds(a, t) by the proportionality factor p(t).

Mortality Change in France, Sweden, and the U.S. We will now show
that observed mortality patterns conform closely to the propor-
tionality assumption (Eq. 6) if child and young adult mortality is
ignored. All quantities in this section, in Figs. 2–6, and in Table
1 are calculated from observed values of �(a, t) for ages 	30, but

Fig. 2. Average force of mortality for 1980–1995, observed as �(a, t), estimated from l(a, t) as �s(a, t), and estimated as the product �s(a,1980–1995)p(t) for
France (A), Sweden (B), and the U.S. (C). Also shown is the average death density function for 1980–1995, observed as d(a, t), estimated from l(a, t) as ds(a, t),
and estimated as the product ds(a,1980–1995)p(t) for France (D), Sweden (E), and the U.S. (F).
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�(a, t) is set to zero for ages �30 years for all t. Our estimates
of life expectancy at birth are therefore equal to 30 plus the life
expectancy at age 30. For populations with high life expectancy,
nearly all deaths (97–98%) occur at ages 	30 yr, and actual life
expectancy at birth is therefore close to 30 plus the life expect-
ancy at age 30.

Fig. 2 A–C shows the age schedules, �(a, t), �s(a, t), and
p(t)�s(a, t), all calculated as averages of annual values for
1980–1995, for France, Sweden, and the U.S. Fig. 2 D–F shows
the age schedules d(a, t), ds(a, t), and p(t)ds(a, t) calculated in the
same way with p(t) estimated with Eq. 8a. The near coincidence
of �(a, t) and p(t)�s(a, t) and of d(a, t) and p(t)ds(a, t) shows that

the proportionality assumption is a good approximation for all
three countries. Note that the logarithmic scale used in Fig. 2
A–C means that perfect proportionality corresponds to constant
differences between the plotted values of �(a, t) and �s(a, t).

Fig. 3 A–C shows �(a, t) for 1980 and 1995 for the same three
countries. Fig. 3 D–F shows corresponding values for d(a, t). The
pattern of change in these schedules is consistent with the
pattern of shifting and inflation�deflation noted above.

Fig. 4 plots the age schedule l(a, t) for 1980 and 1995 for the
three countries. The shape of l(a, t) changes very little, but there
is a shift to higher ages as life expectancy rises. The magnitude
of the shift was 3.4 yr for France, 2.4 yr for Sweden, and 2.1 yr
for the U.S.

The first three columns of Table 1 present averages of annual
estimates of M1(t), M2(t), and M3(t) for the years 1980–1995. The
values for M1(t) and M2(t) are nearly identical, as expected, but
the M3(t) values are substantially higher. The reason for the
higher value of M3(t) is discussed below.

Tempo Effects in Demographic Analysis. Tempo effects were first
discovered and analyzed in the study of fertility. If women shift
the ages at which they bear children upward without changing
their completed fertility, annual numbers of births will be less
than they would have been, because the same number of births
will be spread out over a longer time period. Similarly, if women
begin to have children at younger ages, annual numbers of births

Table 1. Alternative estimates of the period mean age at death
(assuming no mortality under age 30)

Mean age at death, females, 1980–1995

M1(t) M2(t)
M3(t)

( � e0(t)) M4(t)
Tempo effect
M3(t)-M4(t)

France 79.0 79.2 81.4 79.0 2.4
Sweden 79.5 79.5 81.1 79.4 1.6
U.S. 78.3 78.3 79.9 78.3 1.6

Source: Death rates from University of California, Berkeley Mortality Data
Base, available at www.demog.berkeley.edu�wilmoth�mortality.

Fig. 3. Observed period force of mortality �(a, t) in 1980 and 1995 for France (A), Sweden (B), and the U.S. (C). Also shown is the observed period death density
function d(a, t) in 1980 and 1995 for France (D), Sweden (E), and the U.S. (F).
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will be larger than they would have been, because the same
number of births occurs over a shorter time period. These
changes in annual number of births induced by changes in the
timing of childbearing are tempo effects.

Fertility tempo effects have been extensively documented. The
postwar ‘‘baby boom’’ in the U.S., for example, was due in part
to a decline in the mean age at childbearing during the late 1940s
and the 1950s (6–9).

Tempo effects complicate the study of levels and trends of
fertility, because they produce changes in period fertility rates
that depend on the rate at which the mean age at childbearing
changes, independently of changes in completed fertility of
cohorts. Ryder (10) introduced the term ‘‘timing distortion’’ to
refer to tempo effects, because they are undesirable in most
analyses of fertility levels and trends.

Tempo effects influence demographic processes other than
fertility. A tempo effect can be defined in general as an inflation
or deflation of the period incidence of a demographic event
(births, marriages, and deaths) resulting from a rise or fall in the
mean age at which the event occurs.

Tempo Effects in Mortality. A simple example will demonstrate
how mortality tempo effects operate. Consider a stationary
population with a life expectancy at birth of 70 yr. Suppose the
exact age of death of each individual is predetermined until the

invention of a ‘‘life extension’’ pill that adds 3 mo to the life of
any person who consumes it.

If everyone in the population takes this pill on January 1 of
year T, there will be no deaths during the first 3 mo of the year.
The number of deaths in year T will fall by 25%, and the mean
age at death will rise from 70 to 70.25 yr. Because the pill’s effect
is the same at all ages, the level of the force of mortality function
is also reduced by 25%, and the age to which each value of the
function is attached increases by 0.25 yr. This fall in values of the
force of mortality function, together with the shift to older ages,
causes life expectancy at birth as conventionally calculated to rise
to �73 yr for year T.

In the next year, the number of deaths and the force of
mortality function rise to the level observed before year T, but
with values shifted forward to older ages by 0.25 yr. Life
expectancy at birth as conventionally calculated, having risen
from 70 yr prior to year T to �73 yr during year T, falls back to
70.25 yr (Fig. 5). We contend that this temporary rise in life
expectancy at birth as conventionally calculated is a tempo
distortion, because it is at variance with the known trend in the
mean length of life. Distortion of this kind occurs whenever the
standardized mean age at death changes.

Removing Tempo Effects. The tempo effect deflates (inflates)
d(a, t) and �(a, t) when the standardized mean age at death rises
(falls). Formulas 8b,c show this deflation or inflation is esti-
mated by the multiplicative factor 1 � �M2(t)��t when the
proportionality assumption holds. The tempo effect may there-
fore be removed by dividing d(a, t) and �(a, t) by 1 � �M2(t)��t.
Because M1(t) � M2(t), division by 1 � �M1(t)��t gives the same
result. The latter approach is preferred, because it gives more
stable results when applied to observed mortality rates. We
define

�*�a, t� � ��a, t���1 � �M1�t���t� and [10a]

d*�a, t� � d�a, t���1 � �M1�t���t�, [10b]

and refer to the expressions on the left as the tempo-adjusted
death density and force of mortality. It follows from Eq. 8 that
�*(a, t) � �s(a, t) and d*(a, t) � ds(a, t) when the proportionality
assumption holds.

Fig. 4. Observed period survival function l(a, t) in 1980 and 1995 for France
(A), Sweden (B), and the U.S. (C).

Fig. 5. Hypothetical illustration of effect of increase in mean age at death by
0.25 yr (from 70.0 to 70.25) during year T on conventional life expectancy.
Before and after T, M1(t) � M2(t) � M3(t). During T, a tempo distortion of
�25% in the number of deaths results in an upward distortion of �2.5 yr in
M3(t).
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To calculate life expectancy at birth corrected for the tempo
effect, the defining formula 4c is used with �*(a, t) substituted
for �(a, t), giving

M4�t� � �
0

�

exp���
0

a


��x, t���1 � �M1�t���t��dx�da

��
0

�

exp���
0

a

�s�a, t�dx�da ��
0

�

l�a, t�da � M1�t�,

[11]

where M4(t) denotes life expectancy at birth without the tempo
effect. Removing the tempo effect from M3(t) gives the same
result as M1(t) or M2(t). The undistorted life expectancy at birth
can be estimated as M1(t), M2(t), or M4(t).

Table 1 shows average annual values of M4(t) as well as M1(t),
M2(t), and M3(t) for females in France, Sweden, and the U.S. for
the period 1980–1995. The corresponding annual trends are
plotted in Fig. 6. These results confirm that M1(t), M2(t), and
M4(t) are nearly identical, but M3(t), the life expectancy at birth
calculated by conventional life table methods, is substantially

higher than the other three means. The tempo effect, M3(t)
minus M4(t), averages 2.4 yr for France and 1.6 yr for Sweden and
the U.S.

This analysis of tempo effects is based on trends in adult
mortality only. We ignore any tempo effects in mortality under
age 30, because they are probably small and difficult to quantify.
In the absence of tempo effects under age 30, the tempo effect
in life expectancy at birth is only 2% or 3% smaller than the
tempo effect above age 30 measured here. This is because the
probability of survival from birth to age 30 is typically 0.98–0.97
in contemporary societies with high life expectancy.

Conclusion
Life expectancy at birth as conventionally calculated is distorted
whenever it is changing. We have provided formulas to adjust for
this distortion. The formulas are applicable to populations with
high life expectancy. The adjustments for France, Sweden, and
the U.S. in recent decades reduce conventionally calculated life
expectancy at birth by 1.6 to 2.4 yr. These results confirm and
extend those given in Bongaarts and Feeney (5).

The essential argument is as follows. Empirical observation
indicates that the proportionality assumption is closely approx-
imated when life expectancy at birth is high and child and young
adult mortality are ignored. When the proportionality assump-
tion holds, increases (decreases) in length of life are realized by
a uniform translation of the standardized population age distri-
bution and the force of mortality function inherent in this age
distribution to higher (lower) ages. Neither the shape nor the
level of the standardized age distribution or the inherent force
of mortality function changes; only their location on the age scale
changes.

The force of mortality function is likewise translated to higher
(or lower) ages without any change in shape, but its level changes
with the rate of change in the standardized mean age at death,
as shown by Eq. 8b. When the standardized mean age at death
rises (falls), the force of mortality function falls and shifts to the
right (rises and shifts to the left). This fall (rise) in the force of
mortality represents the tempo effect and produces an undesir-
able rise (fall) in life expectancy at birth as conventionally
calculated. In our hypothetical example (Fig. 5), increasing the
standardized mean age at death from 70 to 70.25 yr over 1 yr
results in a temporary decline of 25% in the force of mortality
function and a temporary rise of nearly 3 yr in conventionally
calculated life expectancy at birth. The tempo effect in life
expectancy in this case is �10 times the net change in mean
lifetime.

In interpreting these findings, it is important to distinguish
between current observed death rates and current mortality
conditions (11). We do not question the conventional life table
calculation of period life expectancy from observed age-specific
death rates. We argue rather that tempo effects distort both the
observed death rates and the corresponding life expectancy, so
that their values give a misleading indication of current mortality
conditions.

Our empirical focus has been on human survival, but life table
methods are widely applied to survival data of all kinds. Exam-
ples include age at marriage (the interval between birth and
marriage), birth interval analysis (intervals between successive
births), length of schooling (interval between entering and
leaving school), and postoperative survival (interval between
operation and death). It is therefore likely that tempo effects are
pertinent to many other kinds of statistical survival analyses.

Appendix 1
We have to prove that the proportionality assumption (Eq. 6)
implies Eq. 8a of the text. Bennett and Horiuchi (12), Preston
and Coale (13), and Arthur and Vaupel (14) show that

Fig. 6. Trends from 1980 to 1995 for alternative estimates of mean age at
death M1, M2, M3, and M4 for France (A), Sweden (B), and the U.S. (C). The
difference M3 � M4 equals the tempo effect.
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��a, t� � �s�a, t� � r�a, t�, [A1]

where

r�a, t� �
��l�a, t���t

l�a, t�
[A2]

is the age-specific growth rate for age a at time t for the
population whose age distribution at time is t given by l(a, t).
Note that Eq. A1 may be written as

��a, t� � � ��l�a, t���a
l�a, t�

�
�l�a, t���t

l�a, t� � , [A3]

which is an equation used in modeling cell population dynamics
(15–18). Equating the expressions for �(a, t) given by the
proportionality assumption (Eq. 6a) and Eq. A1 and rearranging
terms gives

r�a, t� � 
1 � p�t���s�a, t�. [A4]

Substitution of Eqs. A2 and 5b in Eq. A4 yields

�l�a, t�
�t

� 
1 � p�t��
��l�a, t�

�a
. [A5]

From the definition (Eq. 4a) of M1(t), then,

�M1�t�
�t

�
�

�t�
0

�

l�a, t�da � �
0

� �l�a, t�
�t

da

� 
1 � p�t���
0

���l�a, t�
�a

da. [A6]

Because the last integral on the right equals one, we have
established formula 8a of the text.

Integrating the density function d(a, t) over age results in a
period mortality measure that may be called the total mortality
rate TMR(t). (This measure is equivalent to the total fertility rate
widely used in the analysis of fertility levels and trends.)

TMR�t� � �
0

�

d�a, t�da. [A7]

Substitution of Eq. 8a gives

TMR�t� � �
0

�

p�t�ds�a, t�da � p�t�. [A8]

Appendix 2
We have to prove that the proportionality assumption implies
uniformly shifting age distributions, i.e., Eq. 9, provided there is
no mortality at younger ages. The first step is to find a charac-
terization of uniformly shifting age distributions that applies to
a point in time. The directional derivative provides such a
characterization. The directional derivative of the function
l(a, t) at the point (a, t) in the direction (b, u) is the rate of
change at time t of the function l(a � bt, t � ut), which may be
expressed as

1
	b2 � u2 �b

�l�a, t�
�a

� u
�l�a, t�

�t � . [A9]

Now let f(a, t) be such that the directional derivative of l(a, t) at
the point (a, t) in the direction ( f(a, t),1) equals zero. Uniform
translation corresponds to the condition that f(a, t) be constant
with respect to age, f(a, t)  f(t) for all t, and therefore to the
condition

f�t�
�l�a, t�

�a
�

�l�a, t�
�t

� 0. [A10]

If this identity holds, the directional derivative of l(a, t) at the
point (a, t) in the direction ( f(t), 1) is zero.

If the proportionality assumption holds, text formula 8b holds
(as just shown in Appendix 1), and this together with Eq. A1
implies, equating the expressions for �(a, t) and rearranging
terms,

�M1�t�
�t

�s�a, t� � r�a, t� � 0. [A11]

Multiplying both sides by �l(a, t) gives

�M1�t�
�t

�l�a, t�
�a

�
�l�a, t�

�t
� 0, [A12]

which shows that the directional derivative of l(a, t) at (a, t) in
the direction ( f(t), t) equals 0 for all ages a, with f(t) �
�M1(t)��t.

To show that this implies uniform shifting of the age distri-
bution, it is necessary only to note that f(t) is the rate of change
of the contour line in the age-time plane defined by the points
(x � t, t) for which l (x � t, t) � l (a, 0). The function F(t) of
the uniform shifting formula (Eq. 9) therefore equals the
integral of f(�) from 0 to t.
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